期刊文献+

掺杂原子质量对硅声子散射的影响 被引量:3

Effect of Atomic Mass of Dopants on Phonon Scattering in Si
下载PDF
导出
摘要 本文采用分子动力学方法,重点研究了掺杂原子质量对硅晶格振动行为的影响,在原子尺度上清楚地展示出目前实际无法展现的点缺陷影响声子散射的演化过程。结果表明:同位素掺杂的存在会在特定声子频率区引起共振,使透射率显著减少,掺杂原子质量较大时共振区域明显扩大,且透射率随掺杂浓度增加下降得越快,会使材料导热性变差;掺杂原子质量相同时,共振区中最小透射率对应的频率值不随浓度变化而改变。在大于共振频率时,有明显LA到TA声子模式的转变,随掺杂原子质量的增加TA模式所占比例增大。这些结果对深入认识点缺陷对晶格导热微观机制的影响有积极意义。 By using molecular dynamics simulation the effect of atomic mass of dopants on lattice vibration in silicon has been researched,the evolution of phonon scattering from point defects has been explicitly displayed in the atomic scale,which can not be currently observed by actual experiments.The results show that: the isotope dopants can lead to a dramatic drop of transmission coefficient in the specific phonon frequency region,which attributes to the local resonance caused by dopants.Heavier dopants make larger resonant region and greater decrease of transmission coefficients with increasing dopant concentration, these could lead to poorer thermal conductivity of the materials. The frequency where the minimum transmission coefficient occurs is almost not affected by the dopant concentration with same atomic mass of dopants. When the frequency is greater than the resonant frequene~~, there is obvious conversion from LA to TA phonon mode, and the proportion of TA mode increases as the atomic mass increases. These results could be significant for through understanding of the microcosmic mechanism of point defect effect on lattice heat transfer.
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2009年第6期876-879,共4页 Journal of Materials Science and Engineering
基金 美国能源部DOE-NERI支持,资助项目(DE-FC07-05ID14649)
关键词 掺杂 声子散射 分子动力学模拟 原子质量 dopant phonon scattering molecular dynamics simulation atomic mass
  • 相关文献

参考文献11

  • 1Cahill D G, Ford W K, et al. Nanoscale thermal transport [J]. Journal of Applied Physics, 2003, 93(2): 793-818.
  • 2Klemens P G. The scattering of low-frequency lattice waves by static imperfections [C]. Proceedings of the Physical Society, London, 1955, Section A 68: 1113-1128.
  • 3Murakawa A, Ishii H, Kakimoto K. An investigation of thermal conductivity of silicon as a function of isotope concentration by molecular dynamics[J]. Journal of Crystal Growth, 2004, 267:452-457.
  • 4Cahill D G, Watanabe F, Rockett A, Vining C B. Thermal conductivity of epitaxial layers of dilute SiGe alloys [J]. Physical Review B, 2005, 71, 235202: 1-4.
  • 5Volz S, Saulnier J B, et al. [J]. Microelectronics Journal, 2000, 31: 815-819.
  • 6Stillinger F H, Weber T A. [J]. Physical Review B, 1985, 31(8) : 5262-5271.
  • 7王慧娟,陈成,邓联文,江建军.硅晶体中点缺陷结合过程的分子动力学模拟[J].材料科学与工程学报,2007,25(2):298-300. 被引量:6
  • 8Schelling P K, Phillpot S R, Keblinski P. [J]. Applied Physics Letters, 2002, 80(14): 2484-2486.
  • 9Yao M, Watanabe T, et al. Phonon-defect scattering in doped silicon by molecular dynamics simulation[J].Journal of Applied Physics, 2008, 104(024905): 1-10.
  • 10Klein M V. [J]. Physical Review, 1963, 131(4): 1500- 1510.

二级参考文献8

  • 1乔永红,王绍青.硅晶体中点缺陷结合过程的分子动力学研究[J].物理学报,2005,54(10):4827-4835. 被引量:8
  • 2Dimitris Maroudas,Robert A Brown.Calculation of thermody-namic and transport properties of intrinsic point defects in silicon[J].Phys.Rev.B,1993,47(23):15562~15577.
  • 3Meijie Tang,L Colombo,Jing Zhu,T Diazde la rubia.Intrinsic point ddects in crystalline silicon:Tight-binding molecular dynamics studies of self-diffusion interstitial-vacancy reeombin-ation and formation volumes[J].Phys.Rev.B,1997,55(21):14279~14289.
  • 4Mary T,Zawadaki,Weiwei Luo,Paulette Claney.Tight-binding molecular dynamics study of vacancy-interstitial annihilation in silicon[J].Phys.Rev.B,2001,63(20):205205~205218.
  • 5Frank H stininger,Thomas Weber.Computer simulation of local order in condensed phases of silicon[J].Phys.Rev.B,1985,31(8):5262~5271.
  • 6陈舜膦.计算材料科学[M].第一版北京:化学工业出版社,2005,100~105.
  • 7Frenkel & smit[荷兰].分子模拟-从算法到应用[M].第一版.北京:化学工业出版社,2002,57~96.
  • 8王坚,王绍青.硅团簇熔化行为的紧束缚分子动力学研究[J].物理学报,2003,52(11):2854-2858. 被引量:7

共引文献5

同被引文献38

  • 1张建新,高爱华.改善铝合金导热性能途径的初探与分析[J].铸造技术,2004,25(9):719-721. 被引量:4
  • 2何志,张瑞杰,介万奇.冷却速率对Al-Si-Mg三元合金凝固过程的影响[J].铸造,2005,54(2):187-189. 被引量:8
  • 3Pouchon MA, Chen J, Hoffelner W. Microcharacterization of damage in materials for advanced nuclear fission plants [J]. Advanced Materials Research, 2009, 59:269-274.
  • 4de la Rubia TD, Caturla M J, Tobin M. Molecular dynamics studies of radiation effects in silicon carbide [C]//MRS Proceedings. Cambridge University Press, 1994, 373: 555.
  • 5Katoh Y, Snead L L, Nozawa T, et al. Advanced radiation- resistant ceramic composites [J]. Advances in Science and Technology, 2006, 45: 1915-1924.
  • 6Forsberg C. Fuel geometry options for salt-cooled advanced high-temperature reactors[C], in: ICAPP 2007, Nice, France, 2007.
  • 7Konomura M, Mizuno T, T. Ohkubo S Y. A promising gas cooled fast reactor concept and its R-D plan[C], in: GLOBAL 2003, New Orleans, 2003.
  • 8Snead L L, Nozawa T, Katoh Y, et al. Handbook of SiC properties for fuel performance modeling[J]. Journal of Nuclear Materials, 2007, 371(1): 329-377.
  • 9Katoh Y, Hashimoto N, et al. Microstructural development in cubic silicon carbide during irradiation at elevated temperatures I-J]. Journal of nuclear materials, 2006, 351(1): 228-240.
  • 10Samolyuk GD, Golubov SI, Osetsky YN, et al. Impact of vacancy-type defects on thermal conductivity of t-SiC: Molecular dynamics versus an analytical approachl,M]. 2013, 248-68.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部