期刊文献+

用分形理论增强红外图像的方法 被引量:1

Enhancement of infrared image using fractal theory
下载PDF
导出
摘要 红外图像边缘模糊不利于人眼观察,为了改善红外图像的视觉效果,提高红外图像的可视度,采用分形布朗理论对红外图像进行增强.由分形布朗随机场的性质可知,图像的小区域范围满足自相似性,但区域的边界处的规律性被打破,因此边界的H值发生奇异,红外图像灰度表面粗糙度即被描述出来.首先计算图像每个像素的分形参数,根据人眼的视觉敏感特征把图像的像素进行分类,分为平滑点和边缘点,然后对各个像素分别加权增强.试验结果表明,增强图像突出了目标的轮廓,获得良好的视觉效果.由于该方法充分考虑视觉特性,可以解决红外图像边缘模糊可视性差的问题. In order to improve the visibility of infrared image, the fractal Brownian theory is employed to enhance the visual effect of infrared images. According to the characteristc of fractal Brownian random (FBR) fields, small regions in the image are self-similar in statistics, while the regularity at the edge of objects in the image is broken, therefore H value of the edge is in singularity. The fractal dimension of each pixel is calculated using a FBR model, then the self-similitude and the surface roughness of the gray level of each pixel are described using the fractal value of each pixel. Human visual system (HVS) is sensitive to the edge area of an image, and the pixels are then classified into edge pixels and smooth pixels according to their fractal dimen- sions. The gray level of each edge pixel is weighted and enhanced using a fractal based HVS. Experimental results indicate that FBR model is effective in detecting the edge detail of an infrared image. This approach can be used to preserve edge details and enhance the visibility of an image.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第11期77-80,共4页 Journal of Harbin Institute of Technology
基金 黑龙江省自然科学基金资助项目(F200818)
关键词 红外图像 分形 视觉特性 图像增强 infrared image fractal dimension human visual system image enhancement
  • 相关文献

参考文献10

  • 1PENTLAND A P. Fractal-based description of natural scenes[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1984, 6(6): 661 -674.
  • 2OJALA T, PIETIKAINEN M, HARWOOD D. A comparative study of texture measures with classification based feature distributions [J]. Pattern Recognition, 1996,29(1) :51 -59.
  • 3CHAUDHURI B B, SARKAR N. Texture segmentation using fractal dimension[ J]. IEEE Tran PAM, 1995,17 ( 1 ) :72 -77.
  • 4张东衡,沈永增,张敏捷.基于分形的低反差图像增强方法[J].浙江工业大学学报,2006,34(3):266-268. 被引量:3
  • 5戚大伟.木材无损检测图像处理系统的研究[J].林业科学,2001,37(6):92-96. 被引量:17
  • 6巫兆聪,方圣辉.基于分形理论的SAR图像边缘检测[J].武汉测绘科技大学学报,2000,25(4):334-337. 被引量:12
  • 7MANDELBROT B B. The fractal geometry of nature [ M]. San Francisco: Freeman, 1982.
  • 8ZHU Jubo, LIANG Diannong. Combinatorial fraetal Brownian motion model [ J ]. Science in China (Series E), 2000, 43 ( 3 ) :254 - 262.
  • 9LI T L, SUNDAREHAN M K, ROEHRIG H. Adaptive image contrast enhancement based on human visual properties[J]. IEEE Trans Medical Imaging, 1994,13 (4) :573 -586.
  • 10魏崇奎,成礼智.一种基于掩盖效应的感知域图像质量评价方法[J].中国图象图形学报(A辑),2004,9(2):195-200. 被引量:17

二级参考文献16

  • 1高峰.二维数字图象处理中的非线性滤波技术[J].光子学报,1995,24(1):48-56. 被引量:4
  • 2薛东辉,朱耀庭,朱光喜,万发贯,熊艳.基于DFBIR场的图像边缘提取的一种新方法[J].信号处理,1996,12(1):18-22. 被引量:8
  • 3刘自强 戴澄月.木材缺陷的X射线无损检测[J].林业科学,1984,20(2):34-37.
  • 4Algazi R.Design of subband coders for high quality based on perceptual criteria[J].Application of Digital Image Processing XV,1992,SPIE-1771:396~405.
  • 5Winkler S. Vision Models and Quality Metrics for Image Processing Applications [D]. Germany: Diplom-lngenieur der Elektrotechnik, Technische Universitat Wien de nationalite autrichienne, 2000-12-21.
  • 6Miyahara M, Kotani K, Algazi V R. Objictive Picture Quality Scale for Image Coding [J]. IEEE Transactions Commnication, 1998,46(9) :1215-1225.
  • 7Mannos J L, Sakrison D J. The effect of a visual fidelity criterion on the encoding of images[J]. IEEE Transactions on Inform Theory, 1974,20(7) : 525-536.
  • 8Ngan K N’Rao K R,Singh H.Cosine transform coding incorporating human visual system model[A].In:SPIE fiber'86[C],Cambridge,MA U S A,1986:165~171.
  • 9Daly S.Visible differences predictor:An algorithm for the assessment of image fidelity[J].SPIE Conference on Human Vision,Visual Processing and Digital Display Ⅱ,1 992,1666:2~14.
  • 10Nill K B.A visual model weighted cosine transform for image compression and quality assessment[J]. IEEE Transactions on Commcation,1985,33(3):551~557.

共引文献41

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部