期刊文献+

空间目标序列图像识别技术 被引量:1

Automatic space target recognition based on sequential images
下载PDF
导出
摘要 针对远距/近距空间目标成像的特点,提出一种基于序列图像的多尺度自动目标识别(ATR)方案.该方案综合利用目标的尺度变化、姿态变化及图像特征信息,分别构建多尺度目标分类器、姿态判别器,并估计目标识别结果可信度、相邻帧姿态变化的权重以及目标尺度权重;根据当前帧和上一帧的识别结果,进行目标类别的融合判别.对STK产生的10类仿真空间目标进行测试,试验结果表明:对远距空间目标,由于目标像素少,仅用单帧图像的识别率低,合理利用目标序列图像包含的信息,可有效提高目标识别率. According to the space target imaging characteristics in long/short range, an automatic target recog- nition method with multiple sCales is proposed based on sequential images. By integrating varying scale, var- ying attitude and image features, multi-scale classifiers were constructed with support vector machines, and at- titude identification was conducted through RBF neural networks. Then the estimation on the confidence of recognition results, the weight of varying attitude between two adjacent images, and the weight of target scale was discussed respectively. And the final recognition result was obtained by fusion judgment, according to the current recognition result and the previous recognition result. Tests on 10 classes of video data simulated by STK show that the proposed method is effective. For space targets in long range, owing to small pixels, the recognition accuracy is low with only current image, while the high recognition accuracy can be achieved using sequential images.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第11期115-119,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60775022)
关键词 目标识别 多尺度特征 支持向量机 姿态判别 序列图像 automatic target recognition multi-scale features support vector machines attitude identifica- tion sequential images
  • 相关文献

参考文献12

二级参考文献55

  • 1[5]Platt J.Fast training of support vector machines using sequential min-imal optimization[C]//Schlkopf B,Burges C,Smools A.Advances in Kernel Methods--Support Vector Learning// Cambridge,MA:MIT Press,1999:185-208.
  • 2[6]Platt J.Using analytic QP and sparseness to speed training of support vecter machines[C]//Kearns M,Solla S,Cohn D.Advances in Neu-ral Information Processing Systems Ⅱ,Cambridge,MA:Mrr Press,1999:557-563.
  • 3[7]Beser B,Guyon I,Vapnik V.A training algorithm for optimal mar-gin classifiers[C]//Haussler D.Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory,ACM Press,1992:144-152.
  • 4[8]Osuna E,Freund R,Girosi F.Support Vector Machines:Training and Application[R].CBCL Paper # 144/AI Memo # 1 602,Cam-bridge,MA:Massachusetts Institute of Technology,AI Lab,1997.
  • 5[10]CHANG Chihchung,LIN Chihjen.LIBSVM:a Library for Support Vector Machines (Version2.82) http://www,csie.ntu.edu.tw-cjlin papers libsvm,pd.
  • 6黄培康.战略弹道导弹的识别与反识别[C]..总装科技委年会2001年会议论文集[C].北京,2001.420-425.
  • 7Hu M K.Visual pattern recognition by moment invariant[J].IRE Trans Information Theory,1962,1 (8):179 -187.
  • 8Dudani S A,Breeding K J,McGhee R B.Aircraft identification by moment in variants[J].IEEE Trans Comput,1977,(1):39-46.
  • 9Marouani S,Huertas A,Medioni G.Model-based aircraft recognition in perspective aerial imagery[A].Proceedings of International Symposium on Computer Vision[C].1995.371-376.
  • 10Goshtasby A. Description and discrimination of planar shapes using shape matrices. IEEE Trans PAMI, 1985, 7: 738~743

共引文献35

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部