期刊文献+

多航天器协同飞行动力学分解建模与控制

Dynamical decomposition modeling and control of multi-spacecraft coordinated flying
下载PDF
导出
摘要 研究了一种基于动力学分解的多航天器协同飞行动力学建模与控制方法.设计了分解算法,将涉及复杂运动的多航天器协同飞行动力学分解为分别反映多航天器整体协同飞行的整体系统动力学和反映多个航天器之间相对运动的队形系统动力学,且这两个子系统的动力学模型与单个航天器的动力学模型具有类似的形式;分别控制这两个子系统即可实现多航天器的队形保持、重构以及整体的大范围转移.设计了整体系统和队形系统的跟踪控制律,并利用李亚普诺夫稳定理论证明了其稳定性.仿真检验了分解算法和控制方法的有效性和合理性. This paper presents a dynamics modeling and control scheme for multi-spacecraft coordinated flying based on dynamical decomposition. With certain decomposition arithmetics, physically separated spacecrafts can be connected together, and multi-spacecraft coordinated flying involved in complicated motions can be decomposed into two parts, one is the group motion of multi-spacecraft flying and the other is the relative motion of spacecrafts formation flying. The dynamics models of these two subsystems possess the similar form with that of a single spacecraft, and the formation maintenance, reconfiguration and formation transfer within a large scope can be realized by controlling one of the subsystems. Tracking control laws for group system and forma- tion system are also designed, and their stability is proved by Lyapunov theorem. Simulation results validate the effectiveness of the decomposition arithmetics and the control scheme-
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第11期147-151,共5页 Journal of Harbin Institute of Technology
关键词 多航天器协同飞行 动力学分解算法 整体系统 队形系统 multi-spacecraft coordinated flying decoposition arithmetic group system formation system
  • 相关文献

参考文献10

  • 1SCHARF D P, HADAEGH F Y, PLOEN S R. A survey of spacecraft formation flying guidance and control ( Part 11 ) : Control [C]//Proceeding of the 2004 American Control Conference. Boston, Massachusetts: [ s. n. ], 2004 : 2976 - 2985.
  • 2CHUNG S J. Application of synchronization to cooperative control and formation flight of spacecraft [ C ]//MAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head, South Carolina: [ s. n. ] , 21X/7 : 1 - 20.
  • 3LEE Dongjun, LIP Y. Passive decomposition of multiple mechanical systems under coordination requirements [C]//43rd IEEE Conference on Decision and Control. Atlantis, Paradise Island, Bahamas: [ s. n. ], 2004: 1240 - 1245.
  • 4LEE D J, LIP Y. Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators [J]. IEEE Transactions on Robotics and Automation, 2003, 19(3) : 443 -456.
  • 5LEE D J, LIP Y. Passive bilateral control and tool dynamics rendering for nonlinear mechanical teleoperators [J]. IEEE Transactions on Robotics, 2005, 21 (5): 936 - 951.
  • 6LEE D J, SPONG M W. Bilateral teleoperation of multiple cooperative robots over delayed communication networks : theory [ C ]//Proceedings of IEEE International Conf on Robotics & Automation. Barcelona, Spain: [ s. n. ] , 2005 : 362 - 367.
  • 7LEE D J, LI P Y. Passive formation and maneuver control of multiple spacecraft [C]//Proceedings of the American Control Conference. Denver, Colorado : [ s. n. ], 2003: 278- 283.
  • 8YOON H, AGRAWAL B N. Novel expressions of equa- tions of relative motion and control in keplerian orbits [ J ]. Journal of Guidance, Control and Dynamics, 2009, 32(2): 664-669.
  • 9CHUNG S J. Nonlinear control and synchronization of multiple lagrangian systems with application to tethered formation flight spacecraft [D]. [S. l.] : Doctor of Science thesis, Department of Aeronautics and Astronautics, MIT, 2007.
  • 10周文勇.在轨服务航天器伴飞轨道设计与控制[D].西安:西北工业大学航天学院,2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部