期刊文献+

用小波变换和Fisher判别对人脸进行特征提取 被引量:2

Feature extraction of human face using kernel Fisher discriminant
下载PDF
导出
摘要 提出了一种用小波变换和核函数Fisher判别对人脸进行特征提取的方法.同传统的特征提取方法相比,用核函数Fisher判别进行特征提取,不仅可以对人脸图像进行维数压缩,而且还可以有效利用提样本的类别信息.同时,用小波变换对人脸图像进行预处理以降低计算复杂度.同传统的Fisher变换相比,可以较好地解决人脸识别这一非线性问题.实验结果表明方法是有效的. In this paper, a method employing the kernel Fisher discriminant and wavelet transform to complete the feature extraction for human face recognition is proposed. Compared with several commonly used methods for feature extraction, the proposed method can not only process dimension reduction, but also provide infor- mation for classification. Furthermore, it performs well in linearly nonseparable case. So optimal results can be achieved for human face recognition, which is a nonlinear problem. To reduce the computational complexity, the wavelet transform is applied to the pretreatment of original human face images. The experiments on ORL dataset prove the efficiency of the proposed method.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2009年第11期278-280,共3页 Journal of Harbin Institute of Technology
关键词 核函数Fisher判别 小波变换 特征提取 人脸识别 kernel Fisher discriminant wavelet transform feature extraction face recognition
  • 相关文献

参考文献8

  • 1万峰,杜明辉.小样本条件下采用Gabor特征的人脸识别[J].计算机辅助设计与图形学学报,2005,17(2):197-201. 被引量:6
  • 2郭瑞,宋海娜,匡纲要.基于定点ICA算法的人脸识别方法[J].计算机工程,2004,30(9):159-161. 被引量:5
  • 3刘向东,陈兆乾.人脸识别技术的研究[J].计算机研究与发展,2004,41(7):1074-1080. 被引量:17
  • 4MULLE K R, MIKA S. An introduction to kernel - based learning algorithms [ J ]. IEEE Transaction on Pattern Analysis, 2001, 12(2) : 181 -200.
  • 5LOTLIKAR R, KOTHARI R. Fractional -step dimensionality reduction [ J ]. IEEE Trans Pattern Anal Machine Intell, 2000, 22:623 -627.
  • 6AYACHEN N C. Frequency based on non-rigid motion analysis[ J ]. W.EE Trans PAMI, 1996, 18(11):1067 - 1079.
  • 7VAPNIK V. The nature of statistical learning theory [M]. New York: Wiley, 1998:100 - 178.
  • 8MIKA S, Ra TSCH G, WESTON J, et al. Fisher discriminant analysis with kernels [ J ]. Neural Networks for Signal Processing, 1999, 9:41-48.

二级参考文献28

  • 1Lades M, et al. Distortion invariant object recognition in the dynamic link architecture [J]. IEEE Transactions on Computers, 1993, 42(3): 300~310
  • 2Wiskott L, et al. Face Recognition by Elastic Bunch Graph Matching [M]. In: Jain L C, et al, eds. Intelligent Biometric Techniques in Fingerprint and Face Recognition. Boca Raton:CRC Press, 1999. 355~396
  • 3Lee T S. Image representation using 2D Gabor wavelets [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10): 959~971
  • 4Huang Chunglin, Huang Yuming. Facial expression recognition using model-based feature extraction and action parameters classification [J]. Journal of Visual Communication and Image Representation, 1997, 8(3): 278~290
  • 5Cootes T F, et al. The use of active shape models for locating structures in medical images [J]. Image and Vision Computing,1994, 12(6): 355~366
  • 6Belhumeur P N, et al. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7): 711~720
  • 7Martinez A M, Benavente R. The AR face database [R].Lafayette: Purdue University, CVC Technical Report # 24,1998
  • 8Liu, Wechsler H. Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition. 1999-03
  • 9Comon P. Independent Component Analysis: A New Concept? Signal Processing, 1994.36(3): 87-314
  • 10Hyvarinen A, O ia E, Independent Component Analysis: A Tutorial http://www.cis.hut.fi/-aapo/papers/IJCNN99_tutorialweb/, 1999

共引文献25

同被引文献22

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部