期刊文献+

烟气自循环式低氧燃烧器燃烧过程的数值模拟 被引量:7

Numerical simulation of a low oxygen burner with self-circulation of flue gas
原文传递
导出
摘要 在分析了工业中几种低氧燃烧方式的基础上,将收缩-扩张结构用于燃烧器空气通道,开发出了烟气自循环式低氧燃烧器,同时借助FLUENT软件对燃烧器进行了大量数值模拟研究.结果表明:喉部的负压是烟气卷吸的驱动力,烟气卷吸量随喉部面积的缩小而急剧增多;随着烟气卷吸量的增多,炉膛中氧含量越来越低,火焰高温区向燃烧器偏移,火焰逐渐变短.最后,将烟气自循环式低氧燃烧器用于熔化保温炉进行了实践,取得了预期的效果. Based on the analysis of some kinds of low oxygen combustion, a low oxygen burner with self-circulation of flue gas was developed with contracted/dilated air channels. The Fluent software was used for numerical simulation of the burner. The results show that the negative pressure at the throat is the driving force of fume entrainment, and the volume of fume entrainment increases dramatically with the decrease of throat area. Because of the increase of fume entrainment, the oxygen concentration in the furnace decreases, the high-temperature zone of the flame moves to the burner, and the length of the flame also becomes short. At last, the low oxygen burner with self-circulation of flue gas was applied to a melting holding furnace, and the anticipated effect was achieved.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2009年第12期1616-1619,共4页 Journal of University of Science and Technology Beijing
关键词 低氧燃烧 燃烧器 烟气卷吸 数值模拟 low oxygen combustion burner gas entrainment numerical simulation
  • 相关文献

参考文献6

二级参考文献40

  • 1刘宏专,徐日瑶.硅热法炼镁时球团在加热过程中的传热及温度分布[J].轻金属,1995(10):40-43. 被引量:17
  • 2钮龙英.实现富氧燃烧的优越性[J].冶金矿山与冶金设备,1996(3):139-143. 被引量:1
  • 3顾学祁 王仲莲 武立云 等.工业锅炉与炉窑节能技术[M].北京:宇航出版社,1990..
  • 4OU JIANPING, XIAO ZEQIANG. Investigation and Application of HTAC in China [A]. Yokohama. HTACG5: Fifth International Symposium on High Temperature Air Combustion and Gasification [C], Tokyo: NFK of Japan, 2002: 28-30.
  • 5PIAN C C. Biomass Fueled MEET Gasifier [A]. XIAO ZEQIANG, KUNIO Y. Proceeding of High Temperature Air Combustion [C], Beijing: The Federation of Engineering Societies of China Association for Science and Technology, 1999:69-88.
  • 6GUPTA A K, HASEGAWA T. High Temperature Air Combustion: Flame Characteristics, Challenges and Opportunities[A]. XIAO Ze-qiang, Kunio Y. Proceeding of High Temperature Air Combustion [C], Beijing: The FederationofEngineering Societies of China Association
  • 7YOSHIKAWA A K. Gasification and Power Generation from Solid Fuels Using High Temperature Air [A]. XIAO ZEQIANG, KUNIO Y. Proceeding of High Temperature Air Combustion [C]. Beijing: The FederationofEngineeringSocieties of China Association for Science and
  • 8YOSHIKAWA K. R&D on Small-scale Gasification of Solid Fuel at the Demonstration Plant of MEET system, MEET Ⅱ[A]. Proceedings of the 4th International Symposium on High Temperature Air Combustion and Gasification [C]. Rome:ENEA of Italy, 2001.68-72.
  • 9GUPTA A K, HASEGAWA T. Effect of Air Preheating Temperature and Oxygen Concentration on Flame Structure and Emission [J]. JoumalofEnergy Resource Technology, 1999, 121(3): 209-213.
  • 10TANAKA R, KISHIMOTO K, HASEGAWA T. High Efficiency Heat Transfer Method with Use of High Temperature Preheated Air and Gas Re-circulation [J]. Science and Technology, 1994,1(4): 35-39.

共引文献77

同被引文献90

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部