期刊文献+

滚动转子式压缩机性能参数通用计算模型 被引量:3

Calculation model of performance parameters for rolling piston compressors
下载PDF
导出
摘要 探讨了滚动转子式压缩机容积效率、功率因子、制冷量、运行电流等几个主要性能参数的通用计算模型。依据压缩机厂商提供的大量不同系列压缩机的实验数据,运用麦夸特算法拟合求解各性能参数相关系数,总结出精度高、通用性好的性能关联式。对不同性能参数,以及单一性能参数的不同公式形式进行分析对比,结果表明,由该方法所建立的模型能够准确地描述变工况下滚动转子式压缩机性能参数,可作为滚动转子式压缩机性能参数计算的理想关联式。 The calculation model of performance parameters such as volumetric efficiency, power efficiency, cooling capacity, current for rolling piston compressors was discussed. Depending on lots of experiment data of different series compressors provided by compressor manufacturers, the correlation coefficient of performance parameters was solved by using Marquard algorithm, the high-precision and good general performance formula was summarized. Different performance parameters and different formula of single performance parameters were compared. The result shows that the presented models can accurately describe the performance parameters of rolling piston compressors under variable operating conditions, can be used for performance parameters calculation of rolling piston compressors.
出处 《低温工程》 CAS CSCD 北大核心 2009年第6期46-51,共6页 Cryogenics
基金 国家自然科学基金项目(项目号:50876059)
关键词 滚动转子式压缩机 性能参数 麦夸特算法 关联式 rolling piston compressors performance parameter marquardt algorithm formula
  • 相关文献

参考文献9

二级参考文献23

  • 1黄国强,陈芝久.汽车空调制冷系统的仿真和优化初探[J].制冷学报,1993,15(3):41-46. 被引量:3
  • 2常晓宇,周春光,管恩政,梁艳春,徐秀娟,王喆.用育种算子改进遗传算法[J].吉林大学学报(信息科学版),2005,23(2):157-161. 被引量:11
  • 3杨博,苏小红,王亚东.基于注意力模型的混合学习算法[J].软件学报,2005,16(6):1073-1080. 被引量:5
  • 4李庆宜.通风机[M].机械工业出版社,1986..
  • 5Ananth Ranganathan. The Levenberg-Marquardt Algorithm [ EB/OL]. [2007-07-15 ]. http ://www. cc. gatech, edu/ ananth/docs/lmtut.pdf.
  • 6YANG Bo, SU Xiao-hong, WANG Ya-dong. BP Neural Network Optimization Based on an Improved Genetic Algorithm [ C]//Proc of the 1st Int'l Conf on Machine Learning and Cybernetics. Beijing: IEEE Press, 2002: 64-68.
  • 7Kim S W, Kim H S. Neural Networks and Genetic Algorithm Approach for Nonlinear Evaporation and Evapotranspiration Modeling [J]. Journal of Hydrology, 2007, 351(3): 299-317.
  • 8Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning [ M ]. Boston: Addison-Wesley Lengman Publishing Co. Inc, 1989.
  • 9Man K F, Tang K S, Kwong S. Genetic Algorithms [ M]. London: Springer, 1999.
  • 10McKeown J J, Stella F, Hall G. Some Numerical Aspects of the Training Problem for Feed-forward Neural Nets [ J ]. Neural Networks, 1997, 10(9): 1455-1463.

共引文献65

同被引文献53

引证文献3

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部