期刊文献+

基于语义相似度的Web文档聚类算法 被引量:3

Web document clustering algorithm based on semantic similarity
下载PDF
导出
摘要 文章提出基于语义相似度的Web文档聚类算法——WDCSS算法,依据文档关键词之间的相似度生成最小树,通过概率统计来确定最小树中相似度阈值,并对最小树中进行切割,同时对较小的子类进行划分合并。实验表明,WDCSS不仅能为具有各种不同聚类形状的数据集准确地分析出数据中存在的合理聚类和例外样本,而且避免了用户参数选择所造成聚类质量降低问题。 A Web document clustering algorithm using semantic similarity(WDCSS) is presented in this paper. Firstly, the minimal spanning tree is obtained from the similarity of document key words. Secondly, the smallest similarity threshold is determined based on the analysis of probability and statistics. Finally, the minimal spanning tree is cut. Simultaneously, the subclasses are divided and merged. The experiment indicates that the WDCSS can not only accurately analyze the reasonable clusters and the exceptional samples from data sets with different cluster shapes, but it can also avoid the decreasing of the clustering quality influenced by the choice of users'parameters.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第12期1846-1850,共5页 Journal of Hefei University of Technology:Natural Science
基金 安徽省自然科学基金资助项目(070412064) 合肥工业大学科学研究发展基金资助项目(062101f)
关键词 WEB文档聚类 语义相似度 聚类算法 最小树 Web document clustering semantic similarity clustering algorithm minimal spanning tree
  • 相关文献

参考文献9

  • 1Han J, Kim T, Choi I. Web document clustering by using automatic keyphrase extraction[C]//IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops, 2007 : 56-- 59.
  • 2Farhat A, Isabelle J F, Douglas O' Shaughnessy. Clustering words for statistical language models based on contextual word similarity[J]. Proceedings of the Acoustics, Speeah, and Signal Processing, 1996 IEEE Internaional Conference, Vol 1. Atlanta, GA,USA, 1996:180 -183.
  • 3Hammouda K M, Kamel M S. Efficient phrase-based document indexing for Web document clustering [J]. IEEE Transactions on Knowledge and Data Ebgineering, 2004,16 (10) : 1279--1296.
  • 4Zhang D. Semantic, hierarchical, online clustering of Web search results[C]//Proceeding of the 6th Asia Pacific Web Conference. Hangzhou, China, 2004 : 69-- 78.
  • 5Chen Zheng, Ma Weiying, Ma Jinwen. Learning to cluster web search results[C]//Proceedings of the 27th Annual In- ternational ACM SIGIR Conference. Sheffield, South Yorkshire,UK, 2004:210 -217.
  • 6Zamir O, Etzioni O. Web document cluserting: a feasibility demonstration[C]//Proceeding of Austrilia ACM SIGIR on Research and Development in Information Retrieval. New York: ACM Press, 1998 : 46- 54.
  • 7Pandya A, Bhattacharyya P. Text similarity measurment using concept representation of texts [C]//Proeeedings of First International Conference on Pattern Recognition and Machine Intelligence. Berlin: Springer, 2005 :678-689.
  • 8Song Jiangchun, Shen Junyi. A Web document clustering algorithm based on concept of neighbor[C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics, 2003 : 46--47.
  • 9Liu Qun, Li Sujian. Word similarity computing based on How net[J]. Computational Linguistics and Chinese Language Processing,2002,17(2) :59-76.

同被引文献48

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部