期刊文献+

三阶微分差分方程非线性边值问题的存在性与唯一性

Existence and Uniqueness of Solutions for Nonlinear Boundary Value Problems of Third Order Differential-Difference Equation
下载PDF
导出
摘要 利用微分不等式技巧研究了一类三阶微分差分方程的非线性边值问题,以二阶边值问题的已知结果为基础,建立了Volterra型积分微分差分非线性方程解的存在性,利用反证法获得了解的唯一性.同时,构造适当的上下解,得到了三阶微分差分方程解的存在性与唯一性.结果表明:这种技巧为其它边值问题的研究提出了崭新的思路. A class of nonlinear boundary value problems of third order differential-difference equation was studied by differential inequality theories.Based on the given results of second order boundary value problem,the existence of the solutions of nonlinear differential-difference equation of Volterra type integro-differential-difference nonlinear equation were established.The uniquess of solution was obtained by applying disproof method.The suit upper and lower solutions were constructed,and existence and unique of solutions of third order differential-difference equation were obtained.The result shows that it seems new to apply these techniques to solve other boundary value problems.
作者 刘勇 王国灿
出处 《大连交通大学学报》 CAS 2009年第6期102-104,共3页 Journal of Dalian Jiaotong University
关键词 三阶微分方程 非线性边值问题 微分不等式 third order differential-difference equation nonlinear boundary value problem differential inequality.
  • 相关文献

参考文献6

二级参考文献15

  • 1刘江瑞,王国灿.时滞非线性系统的奇异摄动[J].大连铁道学院学报,1995,16(2):26-31. 被引量:12
  • 2王国灿.某一类Hammerstein型非线性边值问题[J].辽宁师范大学学报(自然科学版),1995,18(2):105-108. 被引量:11
  • 3史希福.非线性三阶方程三点边值问题解的存在性[J].东北师大学报(自然科学版),1990,22(4):1-7. 被引量:2
  • 4王国灿,吉林大学自然科学学报,1993年,4卷,49页
  • 5Zha Weili,Tohoku Math J,1992年,44卷,545页
  • 6史希福,东北师大学报,1990年,4期,1页
  • 7尤秉礼.常微分方程补充教程[M].北京:人民教育出版社,1981.252.
  • 8Howes F A.The asymptotic solution of a class third order boundary value problem arrising in the theory thin film flows[J].SIAM.J.Appl.Math.,1983,43(5):993-1004.
  • 9Wang Jinzhi.Existence of solution of nonlinear two point boundary value problem for third order nonlinear differential equation[J].Northeastern Math.J.,1991,7(2):181-189.
  • 10Erbe L H.Existence of soution to nonlinear two-point boundary value problems for second-order differential equation[J].Nonlinear Anal.TMA,1982,6(11):1155-1162.

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部