期刊文献+

基于盲解卷积和聚类的机械弱冲击声信号提取 被引量:7

Weak transient impulse signal extraction based on blind deconvolution and cluster in acoustical machine diagnosis
下载PDF
导出
摘要 针对对比函数和紧缩方法的时域盲解卷积算法在分离机械弱冲击信号时,其结果易受解卷积滤波器长度影响的缺点,提出结合分层聚类的改进算法。该算法通过设置一个变长度滤波器组,对获得的多个盲解卷积结果进行聚类分析,解决了单次盲解卷积结果不确定问题,获得了可靠性高的估计信号。计算机仿真和实际环境下故障轴承声信号提取实验验证了算法的有效性。 The time-domain blind deconvolution algorithm based on contrast function and deflation has recently become the focus of intensive research work due to its potential in many applications. However, it has a disadvantage that the separation results are easily influenced by the length of deconvolution filters when the signals come from machine sound. In this paper, an improved blind deconvolution algorithm based on hierarchical cluster is proposed. Hierarchical cluster is applied to analysis the results which are obtained by using a group of deconvolution filters of various lengths. Therefore, the improved algorithm can be employed to receive more reliable and better estimated signals. Computer simulation and acoustical transient impulse signal extraction of faulty bearing in a real-world situation are used to verify the validity of the proposed algorithm.
出处 《振动工程学报》 EI CSCD 北大核心 2009年第6期620-624,共5页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(50805071) 云南省教育厅科学研究基金资助项目(08J0009)
关键词 声学诊断 瞬态冲击信号 分层聚类 盲解卷积 acoustical machine diagnosis transient impulse signal hierarchical cluster blind deconvolution
  • 相关文献

参考文献8

  • 1常西畅,周艳玲,陈进.机械设备噪声故障诊断的新进展[A].2002年全国振动(诊断、模态、噪声与结构动力学)工程及应用学术会议论文集[C].北京,2002.140-143.
  • 2Gelle G, Colas M, Delaunay G. Blind source separa-tion applied to rotating machines monitoring by acous-tical and vibrations analysis[J]. Mechanical SystemsAnd Signal Processing, 2000,14 (3) : 427--442.
  • 3Knaak M, Filbert D. Acoustical semi-blind sourceseparation for machine monitoring [A]. 3rd Int.Conf. on BSS and ICA[C]. San Diego, 2001:361--366.
  • 4Knaak M, Kunter M, Filberi D. Blind source separation for acoustical machine diagnosis[A]. 14th Inter-national Conference on Digital Signal Processing[C].1-3 July, 2002,1: 159--162.
  • 5Simon C, Loubaton Ph, Jutten C. Separation of aclass of convolutive mixtures: a contrast function ap-proaeh[J]. Signal Processing, 2001,81(4) :883---887.
  • 6Jerome Antoni. Blind separation of vibration compo-nents : Principles and demonstrations [J]. MechanicalSystems and Signal Processing, 2005, 19:1 166--1 180.
  • 7[美]Pang-Ning Tan, Michael Steinbach, Vipin Kumar.数据挖掘导论(英文版)[M].北京:人民邮电出版社,2006.
  • 8陈进.机械设备故障诊断技术及其应用[M].上海:上海高教电子音像出版社,2003.

共引文献12

同被引文献81

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部