期刊文献+

不同介孔结构的磷酸钛的制备及性能 被引量:1

Preparation and performance of titanium phosphate with different mesoporous structure
下载PDF
导出
摘要 采用溶胶凝胶模板法结合煅烧的方法,通过选用不同的模板剂合成得到具有不同介孔结构的磷酸钛材料,运用X-射线粉末晶体衍射技术(XRD)、低温N2吸脱附技术和高分辨透射电子显微技术(HRTEM)对样品进行了表征,并分别对各材料的介孔结构及其电化学性能进行了研究。结果表明,材料介孔结构的长程有序性及其孔径大小都对材料的电化学性能有影响,例如在大电流密度下(如:150mA/g),长程有序性较好的与长程有序性较差的磷酸钛介孔材料的首次放电比容量分别为93.9、67.9mA/g,经过100次循环后,容量的保持率分别为54%、20%;大孔径与小孔径的磷酸钛介孔材料的首次放电比容量分别为96.1、67.9mA/g,经过50次循环后,容量的保持率分别为66%、17%。 Titanium phosphate materials with different mesoporous structure were prepared by sol-gel different templates combined with calcination method. The mesoporous structure of the materials was characterized by small angle X-ray diffraction (SA-XRD) method, N2 adsorption/desorption techniques, and high resolution transmission electron microscopy (HRTEM). The results show that both the length of ordered mesostructure and pore size has a great influence on the electrochemical performance of the titanium phosphate materials. For example, the titanium phosphate materials with ordered and worse structure respectively delivers an initial discharge capacity of about 93.9 mA/g and 67.9 mA/g at 150 mA/g, and after 100 cycles, the capacity retention is 54% and 20% respectively. However, the titanium phosphate materials with the large and small pore size respectively delivers the initial discharge capacity of about 96.1 mA/g and 67.9 mA/g, and after 50 cycles, the capacity retention was 66% and 17% respectively.
出处 《电源技术》 CAS CSCD 北大核心 2009年第12期1064-1067,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金纳米科技重大计划课题资助(90606015) 湖南省自然科学基金项目(09JJ3028) 湖南省重点学科建设项目(2006-180)
关键词 长程有序性 介孔结构 电化学性能 磷酸钛 long-distance ordered nature mesoporous structure electrochemical performance titanium phosphate
  • 相关文献

参考文献11

  • 1CHUNG S Y, BLOKING J T, CHIANG Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. J Nat Mater, 2002(1): 123-128.
  • 2TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. J Nat,2001, 414: 359-367.
  • 3KAVAN L, KALBAC M, ZUKALOVA M. Lithium storage in nanostructured TiO2 made by hydrothermal growth[J]. Chem Mater, 2004, 16: 477- 483.
  • 4GAO X,ZHU H, PAN G. Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material [J]. J Phys Chem B, 2004, 108: 2868-2872.
  • 5ATTIA A, ZUKALOVA M, RATHOUSKY J, et al. Mesoporous electrode material from alumina-stabilized anatas TiO2 tbr lithium ion batteries[J]. J Sol Stat Electrochem,2005(9): 138-145.
  • 6YU A S, FRECH R. Mesoporous tin oxides as lithium intercalation anode materials[J]. J of Power Sources,2002, 104: 97-100.
  • 7SHI Z C, WANG Q, YEW L, et al. Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials[J]. Micro Meso Mater, 2006, 88(1-3): 232-237.
  • 8王琼,Adel Attia,施志聪,杨勇.有序介孔磷酸钛锂离子电池正极材料制备及电化学性能[J].电化学,2008,14(1):30-33. 被引量:4
  • 9TIAN B Z, LIU X Y, TU B, et al.Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J].Nat Mater,2003, 2 (3): 159-169.
  • 10ALEXANDRIDIS P,HOLZWARTH J F,HATTON T. Alan micellization of poly (ethylene oxide)-poly (propylene oxide) poly (ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association [J].Macro,1994,27: 2414- 2425.

二级参考文献15

  • 1Gao X, Zhu H, Pan G, et al. Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material [ J]. Phys Chem B, 2004,108:2868.
  • 2Shi Z C, Wang Q, Ye W L, et al. Synthesis and characterization of mesoporous titanium pyrophosphate as lithium intercalation electrode materials [ J ]. Microporous and Mesoporous Materials, 2006, 88 ( 1-3 ) : 232-237.
  • 3Shi Z C, Li Y X, Ye WL, et al. Mesoporous FePO4 with enhanced electrochemical performance as cathode materials of rechargeable lithium batteries [ J ]. Electrochemical and Solid State Letters, 2005, 8 (8) : A396- A399.
  • 4Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials[J]. Chem Mater,1996, 8 : 1147.
  • 5Huo Q, Margolese D I, Ciesia Feng, et al. Genealized synthesis of periodic surface/inorganic composite materials[J]. Nature, 1994, 368(6469): 317.
  • 6Kresge C T, Leonowicz M E, Roth W J,et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [ J]. Nature, 1992, 359 (6397) : 710.
  • 7Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J Am Chem Soc, 1992, 114: 10834.
  • 8Huo Q, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants: Supercage formation in a three-dimensional hexagonal array [ J ]. Science, 1995, 268(5215) : 1324.
  • 9Yang P D, Zhao D Y, David I Margolese, et al. Generalized syntheses of large-poremesoporous metal oxides with semi-crystalline frameworks [ J]. Nature, 1998, 396 ( 6707 ) : 152-155.
  • 10XU Ru-ren(徐如人), PANG Wen-qin (庞文琴), YU Ji-hong(于吉红), et al. Sieve and porous materials chemistry[ M ]. Beijing : Science Publishing Company, 2004.

共引文献3

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部