期刊文献+

基于MPSO-LM算法的车用电池组SOC预测

SOC gauge of battery for EV based on MPSO-LM algorithms
下载PDF
导出
摘要 在对车用氢镍电池组进行了不同工况和温度下的充放电实验,获取了大量能真实反映电池动态行为和特征的实验数据的基础上,建立了一个Back-propagation神经网络的车用动力电池组的仿真模型,实现对电池SOC的预测。为提高BP算法的训练速度和估算精度,设计了一种将改进粒子群算法(MPSO)与Leyenberg-Marquardt(LM)算法组合使用的混合算法(MPSO-LM)用于优化训练BP神经网络。仿真结果表明,所提议的MPSO-LM算法比BP算法更有效,具有较快的收敛速度和较高的预测精度。测试结果中97%数据达到5%的误差或更小。 A back-propagation artificial neural network for SOC gauge was developed based on testing of Ni-MH battery packs for electric vehicle under different driving conditions and temperatures as well as a mass of data records were obtained from laboratory, which captured properly the dynamic behavior and characteristics of the battery pack. In order to improve the performance of BP network, the neural network structure optimization was carried out using modified particle swarm optimization combined with Levenberg-Marquardt algorithm. The technique provides more consistent and fast solution in obtaining the local minimal as compared to other method. The simulation results show that the proposed method matches more than 97 percent of the data sets with sum square error of 5 percent or less.
出处 《电源技术》 CAS CSCD 北大核心 2009年第12期1104-1107,共4页 Chinese Journal of Power Sources
关键词 氢镍电池组 SOC BP神经网络 MPSO-LM算法 Ni-MH battery pack SOC BP neural network MPSO-LM algorithm
  • 相关文献

参考文献7

  • 1EBERHART R C, DOBBINS R W, SIMPSON P. Computational Intelligence PC Tools[M].Boston: Academic Press, 1996.
  • 2EBERHART R C, DOBBINS R W. Neural network PC tools:A practical guide[M].Boston: Academic Press, 1990.
  • 3EBERHART R C, CHEN Y, LYASHEVSKIY S,et al. Determining battery state of charge using computational intelligence [C].Proc Government Microcircuit Applications Conference.FL:Kissimmee, 1996:18-21.
  • 4EBERHART R C,KENNEDY J.A new optimizer using particles swarm theory [C].Proc Sixth International Symposium on Micro Machine and Human Science. Piscataway, NJ:IEEE Service Center, 1995,39-43.
  • 5KENNEDY J, EBERHART R C.Particle swarm optimization [C]. Proc IEEE International Conference on Neural Networks. Piscataway,NJ, IV: IEEE Service Center, 1995:1942-1948.
  • 6徐晋.前馈神经网络学习新算法及其仿真[J].哈尔滨商业大学学报(自然科学版),2004,20(1):24-27. 被引量:13
  • 7李晓东,胡志恒,虞厥邦.一种前馈神经网络的快速学习算法[J].信号处理,2004,20(2):184-187. 被引量:13

二级参考文献15

  • 1Chert S, BIIJJNG S A. Neural network for nonlinear dynamic system modeling and identification[J], lnt Journal of Control, 1992,56(2) :319-346.
  • 2MALIK M. The early restart algorthm[J]. Neural Computation,MIT,2000(12) : 1303 - 1312.
  • 3CHANG K S, ABEL G. A universal neural net with guaranteed convergence to zero system error [ J ]. IEEE Trans Signal Processing,1992, 40(12):3022-3031.
  • 4DENNIS J E, GAY D M, WELSH R E. An adaptive nonlinear least-squares algorithm[J] .ACM Transaction on Math Software, 1981(7):348-368.
  • 5Jacobs,R.A.,“Increased rates of convergence through learning rate adaptation,”Neural Networks,vol.1,no.4,pp.295—308,1 988.
  • 6Miniani,A.A.and Williams,R.D.”Acceleration of back—propagation through learning rate and momentum adaptation,”Proceedings of International Joint Conference on Neural Networks,San Diego,CA,1,676—679.
  • 7FFnaiech,D.Bastard,V.Buzenac。R.Settineri,and M.Najim,“A fast Kalman filter based new algorithm for training feedforward neural networks,”in Proc.EUSIPCO 94,Edinburg,U.K.,Sept.13—16,1994.
  • 8C.S.Liu and C.H.Tseng.“Quadratic optimization method for multiplayer neural networks with local error—backpropagation,”Int.J.Sys.Sci.,Vol.30,No.8,pp.889—898,1999.
  • 9I.M.R.Azimi—Sadjadi and R.J.Liou,“Fast learning process of multiplayer neural network using recursive least squares method,”IEEE Trans.Signal Processing,Vol.40,Fleb.1992.
  • 10S.Abid.EFnaiech and M.Najim.“A fast feedforward training algorithm using a modified form of the standard backpropagation algorithm,”IEEE Trans.Newral Net,Vol.1 2,No.2,pp.424-430,Mar.2001.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部