期刊文献+

求解Maxwell线性元鞍点系统的基于HX预条件子的Uzawa算法

UZAWA ALGORITHM BASED ON HX PRECONDITIONER FOR SOLVING MAXWELL SADDLE-POINT SYSTEM
原文传递
导出
摘要 首先对含跳系数的H^1型和H(curl)型椭圆问题的线性有限元方程,分别设计了基于AMG预条件子和基于节点辅助空间预条件子(HX预条件子)的PCG法.数值实验表明,算法的迭代次数基本不依赖于系数跳幅和离散网格"尺寸".然后以此为基础,对Maxwell方程组鞍点问题的第一类Nedelec线性棱元离散系统设计并分析了一种基于HX预条件子的Uzawa算法.当系数光滑时,理论上证明了算法的收敛率与网格规模无关.数值实验表明,新算法对跳系数情形也是高效和稳定的. We design two preconditioners for the linear finite element discrete system of H^1 and H(curl) elliptic problems with jump coefficients based on AMG and HX auxiliary spaces method,respectively.Numerical experiments indicate that the number of iterations is hardly dependent on mesh size and the jump coefficients.And then,we design and analyze a preconditioned Uzawa algorithm for solving the saddle-point system generated by the lowest order edge element discretization of Maxwell equations.In the Uzawa algorithm, we use HX preconditioner for the primal variable and AMG preconditioner for Schur complement. The theoretical analysis prove that the convergence rate is independent of mesh size if the coefficient is smooth. Furthermore, the numerical results also show that the new algorithm is efficient and robust for jump coefficients.
出处 《数值计算与计算机应用》 CSCD 北大核心 2009年第4期305-314,共10页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金资助项目(10771178) 高性能科学计算研究资助项目(2005CB321702) 国家自然科学基金重点项目(G10531080) 教育部重点项目(208093) 湖南省研究生科研创新项目(CX2009B121)
关键词 节点辅助空间预条件子 鞍点问题 UZAWA算法 跳系数 收敛率 auxiliary spaces preconditioner saddle-point system Uzawa algorithm jump coefficients convergence rate
  • 相关文献

参考文献9

  • 1Bramble J, Pasciak J and Vassilev A. Analysis of the inexact Uzawa algorithm for saddle-point problems[J]. SIAM J. Numer. Anal., 1997, 34: 1072-1092.
  • 2Kolev Tz V and Vassilevski P S. Some Experience With a H1-Based Auxiliary Space AMG for H(curl) Problems, Lawrence Livermore National Laboratory, UCRL-TR-221841, June 5, 2006.
  • 3Greif Chen and Schotzau Dominik. Preconditioners for the discretized time-harmonic Maxwell equations in mixed form[J]. Numer. Linear Algebra Appl., 2006, 00: 1-15.
  • 4Hiptmair Ralf and Xu Jinchao. Nodal Auxiliary Space Preconditioning in H(curl) and H(di) spaces[J] SIAM J. Nnmer. Anal., 2007, 45: 2483-2509.
  • 5Hu Qiya and Zou Jun. Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems[J]. Numer. Math., 2002, 93: 317-338.
  • 6Hu Qiya and Zou Jun. Nonlinear Inexact Uzawa Algorithms for Linear and Nolinear Saddle-point Problems[J]. SIAM J. Optim. 2006, 16: 798-825.
  • 7Hu Qiya and Zou Jun. Substructuring Preconditioners For Saddle-Point Problems Arising From Maxwell's Equations In Three Dimensions[J]. Math. Comp., 2003, 73: 35-61.
  • 8Ruge J W and Stuben K. Algebraic Multigrid, in Multigrid Methods, Frontiers Appl. Math. 3, S. F. McCormick.editor, SIAM, Philadelphia, 73-130, 1987.
  • 9钟柳强,谭林,王俊仙,舒适.一种求解第二类Nédélec棱有限元方程的快速算法[J].计算数学,2008,30(4):397-408. 被引量:4

二级参考文献12

  • 1Bossavit A. Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elments, vol. 2 of Electromagnetism Series[M]. Academic Press, San Diego, CA, 1998.
  • 2Hiptmair R. Multigrid method for Maxwell's equations[J]. SIAM J. Numer. AnaL, 1999, 36: 204- 225.
  • 3Arnold D, Falk R and Winther R. Multigrid in H(div) and H(curl)[J]. Numer. Math., 2000, 85: 175-195.
  • 4Chen Z, Wang L, Zheng W. An Adaptive Multilevel Method for Time-Harmonic Maxwell Equa- tions with Singularities[J]. SIAM J. Sci. Comput., 2007, 29: 118-138.
  • 5Hiptinair R, Widmer G and Zou J. Auxiliary space preconditioning in H(curl)[J]. Numer. Math., 2006, 103: 435-459.
  • 6Kolev Tz V, Pasciak J E and Vassilevski P S. H(curl) auxiliary mesh preconditioning[J]. Numer. Linear Algebra Appl., 2008, 15: 455-471.
  • 7Hiptmair R, Xu J. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) spaces[J]. SIAM J. Numer. Anal., 2007, 45: 2483-2509.
  • 8Amrouche C, Bernardi C, Dauge M and Girault V. Vector potentials in three-dimensional nons- mooth domains[J]. Math. Meth. Appl. Sci., 1998, 21: 823-864.
  • 9Monk P. Finite Element Methods for Maxwell's Equations. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2003.
  • 10Nechaev O V, Shurina E P, Botchev M A. Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation[J]. Comput. Math. Appl., 2008, 55: 2346-2362.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部