摘要
本文研究了一类具有极小基流的单调斜积半流.在假定半流存在一个半连续的半平衡的前提下,我们证明了具有某种一致稳定性的正半轨线的ω-极限集具有1-covering性质,这为理解系统的全局动力学提供了几何洞察.
In this paper, we consider a class of monotone skew-product semiflows with minimal base flows. By assuming the existence of a semi-continuous semi-equilibrium, the 1-covering property of omega-limit set is established for forward orbits possessing some kind of uniform stability, which provides us with geometric insights into the global dynamics.
出处
《应用数学学报》
CSCD
北大核心
2009年第6期1054-1067,共14页
Acta Mathematicae Applicatae Sinica
基金
国家重点基础研究发展计划基金(2005CB321902)资助项目