期刊文献+

一类单调斜积半流的ω-极限集的提升动力学行为

Lifting Dynamics forω-limit Sets of a Class of Monotone Skew-product Semiflows
原文传递
导出
摘要 本文研究了一类具有极小基流的单调斜积半流.在假定半流存在一个半连续的半平衡的前提下,我们证明了具有某种一致稳定性的正半轨线的ω-极限集具有1-covering性质,这为理解系统的全局动力学提供了几何洞察. In this paper, we consider a class of monotone skew-product semiflows with minimal base flows. By assuming the existence of a semi-continuous semi-equilibrium, the 1-covering property of omega-limit set is established for forward orbits possessing some kind of uniform stability, which provides us with geometric insights into the global dynamics.
出处 《应用数学学报》 CSCD 北大核心 2009年第6期1054-1067,共14页 Acta Mathematicae Applicatae Sinica
基金 国家重点基础研究发展计划基金(2005CB321902)资助项目
关键词 单调斜积半流 Ω-极限集 1-covering性质 一致稳定性 monotone skew-product semiflows ω-limit set 1-covering property uniform stability
  • 相关文献

参考文献16

  • 1Sacker R J, Sell G R. Lifting Properties in Skew-Product Flows with Applications to Differential Equations. Mere. Amer. Math. Soc. Amer. Math. Soc., Providence, RI, 1977, 190.
  • 2Shen W, Yi Y. Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows. Mern. Amer. Math. Soc. Amer. Math. Soc., Providence, RI, 1998, 647.
  • 3Jiang J, Zhao X Q. Convergence in Monotone and Uniformly Stable Skew-Product Semiflows with Applications. J. Reine Angew. Math., 2005, 589:21-55.
  • 4Novo S, Obaya R, Sanz A M. Stability and Extensibility Results for Abstract Skew-product Semiflows. J. Differential Equations, 2007, 235:623-646.
  • 5Novo S, Nunez C., Obaya R. Almost Automorphic and Almost Periodic Dynamics for Quasimonotone Nonautonomous Functional Differential Equations. J. Dynam. Differential Equations, 2005, 17(3): 589-619.
  • 6Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations. In: Applied Mathematical Sciences, Vol. 99, Berlin, Heidelberg, New York: Springer-Verlag, 1993.
  • 7Hino Y, Murakami S, Naiko T. Functional Differential Equations with Infinite Delay. In: Lecture Notes in Mathematics, Vol. 1473, Berlin, Heidelberg: Springer-Verlag, 1991.
  • 8Bhatia N P, Hajek O. Local Seml-dynamical Systems. In: Lecture Notes in Mathematics, Vol. 90. New York: Springer-Verlag, 1969.
  • 9Sell G R. Topological Dynamics and Ordinary Differential Equations. London: Van Nostrand- Reinhold, 1971.
  • 10Novo S, Obaya R. Strictly Ordered Minimal Subsets of a Class of Convex Monotone Skew-product Semiflows. J. Differential Equations, 2004, 196:249-288.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部