期刊文献+

具Hardy-Sobolev临界指数的非齐次椭圆方程的正解 被引量:1

Positive Solutions for Nonhomogeneous Elliptic Problems with Critical Hardy-Sobolev Exponents
原文传递
导出
摘要 讨论一类具Hardy-Sobolev临界指数的非齐次半线性椭圆方程,通过应用Lions集中紧性原理建立了S_μ(Ω)的极小函数,再结合Ekeland变分原理、山路引理和Nehari流形的分析方法证明了方程在适当条件下正解的存在性与多重性. In this paper, we discuss a class of nonhomogeneous semilinear elliptic equations with critical Hardy-Sobolev exponents. We get a minimizer of Su(Ω) by using the concentration compactness principle due to Lions. Combining the Ekeland variational principle, a mountain pass lemma and the analysis methods of Nehari manifold, we prove the existence and multiplicity results of positive solutions under certain appropriate conditions.
出处 《应用数学学报》 CSCD 北大核心 2009年第6期1104-1122,共19页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10571174) 江苏省高校自然科学基金(08KJB110009) 重庆邮电学院青年教师基金项目(A2005-19)资助项目
关键词 Hardy—Sobolev临界指数 正解 山路引理 集中紧性原理 critical Hardy-Sobolev exponent positive solutions mountain pass lemma concentration compactness principle
  • 相关文献

参考文献1

二级参考文献15

  • 1Deng Y B. Existence of multiple solutions for -△u + c^2u =u N+2/N-2 + μf(x) in R^N. Proc Royal Soc Edin,1992, 112A: 161-175
  • 2Ruiz D, Willem M. Elliptic problems with critical exponents and Hardy potentials. J D E, 2003, 190: 524-538
  • 3Yosida K. Functional Analysis. 6-th ed. Berlin: Springer, 1999. 120-121
  • 4Brezis H, Lieb E. A relation between point convergence of functions and convergence of functions. Proc AMS, 1983, 88:486-490
  • 5Brezis H, Nirenberg L. Pisitive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Comm Pure Appl Math, 1983, 36:437-477
  • 6Caffarelli L, Cohn R, Nirenberg L. First order interpolation inequality with weights. Compositio Math,1984, 53:259-275
  • 7Cao D M, Li G B, Zhou H S. Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent. Proceedings of the Royal Society of Edinburg, 1994, 124A: 1177-1191
  • 8Cheng T, Zhao Charles Xuejin. Existence of Multiple solutions for-△u-μu/|x|^2=u^2^*-1+σf(x).Math Meth Appl Sci, 2002, 25:1307-1336
  • 9Evans L C. Partial Differential Equations. G S M Vol 19. Providence RI: American Mathematical Society, 1998. 508-511
  • 10Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann Inst H Poincáre Anal Non Linéaire, 1992, 9:243-261

共引文献9

同被引文献16

  • 1Floer A, Weinstein A. Nonspreading Wave Packets for the Cubic Schr6dinger Equation with a Bounded Potential. J. Funct. Anal, 1986, 69:397-408.
  • 2OH, Y G. Existence of Semiclasscal Bound States of Nonlinear Schr6dinger Equations with Potentials of the Class (V)~. Comm. Partial. Differential Equations, 1988, 13:1499-1519.
  • 3Ambrosetti A, Badiale M, Cingolani S. Semiclassical States of Nonlinear SchrSdinger Equations. Arch. Ratinal Mech. Anal., 1997, 140:285-30.
  • 4Li Y Y. On a Singularly Perturbed Elliptic Equation. Adv. Differential Equations, 1997, 2:955-980.
  • 5Rabinowitz P. On a Class of Nonlinear Schr6dinger Equations. Z. Angew Math. Phys., 1992, 43: 270-291.
  • 6Del Pino M, Felmer P. Local Mountain Passes for Semilinear Elliptic Problems in Unbounded Domains. Calc. Var., 1996, 4:121-137.
  • 7Del Pino M, Felmer P. Semiclassical States for Nonlinear SchrSdinger Equaions. J. Funct. Anal., 1997, 149(1): 145 165.
  • 8Lions P L. The Concentration-compactness Principle in the Calculus of Variations. The Locally Compactcase II. Ann. Inst. H.Poincard Anal. Non-lindaire, 1984, 1:223-283.
  • 9Li Y. Remarks on a Cemilinear Dlliptic Equations on RN. J. Differential Equations, 1988, 74:34-49.
  • 10Bahri A, Loins P L. On the Existence of a Positive Solution of Semilinear Elliptic Equation in Unbounded Domains. Ann. Inst. H. Poincard Anal. Non Lindaire, 1997, 14:365-413.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部