期刊文献+

一种中高频激励下动力系统响应的级数展开改进算法

Improved Series Expand Method for Dynamics System Response under Medium and High Frequency Excitations
下载PDF
导出
摘要 针对频率响应函数的级数展开法在中高频激励时计算发散的问题,提出一种新的级数展开改进算法。将系统的结构模态划分为低阶和截断的高阶模态,在模态叠加分析的基础上,将频率响应函数进行泰勒级数展开。根据高低阶模态对质量矩阵和刚度矩阵的耦合特性,用低阶模态及系统矩阵表达高阶模态对响应的影响。研究结果表明,该算法将频率响应函数的级数展开法扩展到高频激励和中频激励范围阶段,在非完备模态条件下提高了频率响应函数的计算精度,数值计算检验了该方法准确可靠并有很好的收敛性。 Aiming at the computational divergence in the series expand method of frequency response function under medium and high frequency excitations, a new improved algorithm for dynamics system response is proposed. Structural modes are divided into available low-order modes and truncated higher-order modes. On the basis of modal superposition analysis, the frequency response function of high order truncation modes is expanded by Taylor series. According to the coupling characteristics between low-order and high-order modes, the contribution of truncated high-order modes to the frequency response function is expressed by low-order modes and system matrix. The improved algorithm extends the series expand method for the range of high frequency and medium frequency excitations; the calculation accuracy of the frequency response function is improved under the non-complete modal conditions. Numerical results validate the feasibility and convergence.
机构地区 西安交通大学
出处 《应用力学学报》 CAS CSCD 北大核心 2009年第4期642-646,共5页 Chinese Journal of Applied Mechanics
基金 国防973项目(61355)
关键词 结构动力分析 频响函数 模态分析 幂级数展开 高频激励 structural dynamic analysis, frequency response function, modal analysis, power series expansion, high frequency excitation
  • 相关文献

参考文献13

  • 1Maddox N R. On the number of modes necessary for the accurate response and resulting forces in dynamic analyses[J]. Journal of Applied Mechanics ASME, 1975, 42:516-517.
  • 2Heng B C, Mackie R I. Parallel modal analysis with concurrent distributed objects[J]. Computers and Structures. 2008, 86(11/12): 1318-1338.
  • 3Pradlwarter H J, Schueller G I. A consistent concept for high- and low-frequency dynamics based on stochastic modal analysis[J]. Journal of Sound and Vibration, 2005, 288(3): 653-667.
  • 4Leger P, Wilson E L. Modal summation methods for structural dynamic computations[J]. Earthquake Engineering and Structural Dynamics, 1988, 16:23-27.
  • 5Kulkarni S H, Ng S F. Inclusion of higher modes in the analysis of non-classically damped systems[J]. Earthquake Engineering and Structural Dynamics, 1992, 21: 543-549.
  • 6Borino G, Muscolino G. Mode-superposition methods in dynamic analysis of classically and non-classically damped linear systems[J]. Earthquake Engineering and Structural Dynamics, 1986,14:705-717.
  • 7Camarda C J, Hattka R T, Riley M F. An evaluation of higher-order modal methods for calculating transient structural response[J]. Computers and Structures, 1987, 27:89-101.
  • 8Akgun M A. A new family of mode-super-position methods for response calculations[J]. Journal of Sound and Vibration, 1993,167: 289-302.
  • 9刘中生,陈塑寰,赵又群.模态截断与简谐载荷的响应[J].航空学报,1993,14(9). 被引量:7
  • 10Huang Cheng, Liu Zhong Sheng, Chen Su Huan. An accurate modal method for computing response to periodic excitation[J]. Computers and Structures, 1997, 63(3): 625-631.

二级参考文献8

  • 1刘中生,1992年
  • 2陈塑寰,结构振动分析的矩阵摄动理论,1991年
  • 3胡海昌,多自由度结构固有振动理论,1987年
  • 4傅志方,振动模态分析与参数辨识,1990年,35页
  • 5瞿祖清,振动测试与诊断
  • 6瞿祖清,振动测试与诊断,1998年,18卷,1期,39页
  • 7傅志方,振动模态分析与参数辨识,1990年
  • 8瞿祖清,傅志方.频响函数计算的高精度级数展开法[J].计算力学学报,1998,15(2):144-148. 被引量:5

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部