期刊文献+

具有无限时滞中立型非线性微分方程周期解的存在性(英文)

Existence of Periodic Solutions for a Kind of Neutral Nonlinear Differential with Infinity Delay
下载PDF
导出
摘要 基于Krasnoselskiis不动点定理,给出一类具有无穷时滞中立型微分方程存在唯一周期解的一组充分条件并用例子说明主要结果的可行性.该条件无需非线性项f满足Lipschitz条件,使得方程的应用范围更宽. The existence and uniqueness of periodic solutions of a kind of nonlinear neutral differential equation with infinity delay is shown by using fixed point principle. In particular, the requirement of Lipschitz condition on the nonlinear function f is essentially dropped,which allows the equation to include a variety of nonlinearities. Meanwhile,an examples are given to illustrate the main results.
出处 《广西科学》 CAS 2009年第4期364-367,共4页 Guangxi Sciences
基金 Supported by the Scientific Research Foundation of Guangxi Education Office of China(No.2009) the Special Scientific Foundation of Yulin Normal University(No.2009YJZD07)
关键词 微分方程 无限时滞 周期解 唯一解 不动点原理 differential equation, infinity delay, periodic solution, unique solution, fixed point principle
  • 相关文献

参考文献13

  • 1Appleby J A,Gyori I,Reynolds D W. Subexponential solutions of scalar linear integro differential equations with delay[J]. Funct Differ Equ, 2004,11 : 11-18.
  • 2Hale J K,Verduyn Lunel S M. Introduction to functional differential equations [M]. New York : Springer Verlag, 1993.
  • 3Gyori I,Ladas G. Positive solutions of integro-differential equations with unbounded delay[J]. J Integral Equations Appl,1992,4:377-390.
  • 4Arino O,Benkhalti R,Ezzinbi K. Existence results for initial value problems for neutral functional differential equations[J]. J Diff Equa, 1997,138 : 188-193.
  • 5Corduneanu C. Existence of solutions for neutral functional differential equations with Causal operators[J]. J Diff Equa,2000,168: 93-101.
  • 6Raffoul Y N. Stability in neutral nonlinear differential equations with functional delays using fixed point theory[J]. Math Comput Modelling, 2004,40 (7-8): 691-700.
  • 7Youssef M ,Mariette R ,Youssf N. Periodicity and stability in neutral nonlinear differential equations with functional delay[J]. Electron J Diff Equa, 2005,142 : 1- 11.
  • 8Cooke K,Krumme D. Differential difference equations and nonlinear initial-boundary-value problems for linear hyperbolic partial differential equations[J].J Math Anal Appt,1968,24:372- 387.
  • 9Smart D R. Fixed points theorems[M]. Cambridge: Cambridge University Press,1980.
  • 10Feng C,Rejean P. On the stability analysis of delayed neural networks systems [J]. Neural Networks, 2001, 14:1181-1188.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部