期刊文献+

噪声环境下基于小波熵的声发射识别 被引量:3

Recognition of acoustic emission based on wavelet entropy in noisy condition
下载PDF
导出
摘要 针对声发射技术在旋转机械故障检测中的强噪声干扰问题,提出了一种基于小波熵的声发射检测算法.该算法首先给定一个合理的阈值,对声发射信号进行小波分解.然后进行分帧处理,使信号在较短的时间间隔内保持特性基本不变,从而求出每一帧信号的小波熵.通过比较每一帧信号的小波熵值与阈值的大小,判断该信号为声发射帧还是噪声帧.为了检验算法的检测效果,在转子实验台上获得碰摩声发射信号,并在测试数据上叠加不同信噪比的高斯白噪声和非平稳噪声,进行声发射识别.实验结果表明:该算法具有较高的识别正确率;在低信噪比环境下,通过调整阈值的可调参数可以有效提高识别的正确率. In acoustic emission(AE) technique,to avoid the serious noise disturbance in the fault diagnosis of rotary machine,a recognition algorithm based on wavelet entropy(WE) is proposed.First,through setting up an appropriate threshold,an AE signal is decomposed by wavelet transform.Secondly,the AE signal is divided into some equal frames to keep the characteristic approximately constant in a short time interval,and the WE of each frame can be calculated.Thirdly,through comparing the value of each WE with the threshold,it can be determined whether the frame belongs to AE frames or noise frames.To test the recognition efficiency of this algorithm,a rub impact AE signal obtained from a rotating test stand is added with white noise and non-stationary noise at various signal-to-noise ratios(SNRs),followed by AE recognition.The experimental results indicate that this algorithm has a high recognition efficiency.In a low SNR environment,the recognition efficiency can be improved by adjusting the parameter of the threshold.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第6期1151-1155,共5页 Journal of Southeast University:Natural Science Edition
基金 国家高技术研究发展计划(863计划)资助项目(2007AA04Z4334) 国家自然科学基金资助项目(60872073) 东南大学科学基金资助项目(KJ2009348)
关键词 声发射 小波熵 识别 acoustic emission wavelet entropy recognition
  • 相关文献

参考文献14

  • 1Kuo C C. Artificial recognition system for defective types of transformers by acoustic emission [ J ]. Expert Systems with Applications ,2009,36(7 ) : 10304 - 10311.
  • 2Rippengill S,Worden K, Holford K M, et al. Automatic classification of acoustic emission patterns [ J ]. Strain, 2003,39(1) :31 -41.
  • 3易若翔,刘时风,耿荣生,沈功田.人工神经网络在声发射检测中的应用[J].无损检测,2002,24(11):488-491. 被引量:23
  • 4刘国华,黄平捷,龚翔,顾江,周泽魁.基于分形维和独立分量分析的声发射特征提取[J].华南理工大学学报(自然科学版),2008,36(1):76-80. 被引量:15
  • 5金文,陈长征,金志浩,龚斌,闻邦椿.声发射源识别中的三比值特征提取方法研究[J].仪器仪表学报,2008,29(3):530-534. 被引量:8
  • 6Van D G, Wevers M, Van Hulle M M. Wavelet packet decomposition for the identification of corrosion type from acoustic emission signals [ J ]. International Journal of Wavelets, Multiresolution and Information Processing,2009,7(4) ,513 -534.
  • 7Kacimi S,Laurens S. The correlation dimension: a robust chaotic feature for classifying acoustic emission signals generated in construction materials [ J ]. Journal of Applied Physics, 2009,106 ( 2 ) : 024909.
  • 8Surgeon M,Wevers M. Modal analysis of acoustic emission signals from CFRP Laminates [ J ]. NDT and International, 1999,32 ( 6 ) :311 - 322.
  • 9Hyunje J, Young S. Fracture source location in thin plates using the wavelet transform of disperse waves [J ]. IEEE Transactions on Transonic, Ferroelectrics, and Frequency Control,2000,47( 3 ) :612 - 619.
  • 10Mallat S. A wavelet tour of signal processing [M]. 2nd ed. San Diego, CA, USA: Academic Press,1999:58 -67.

二级参考文献29

  • 1梁平,龙新峰,樊福梅.基于分形关联维的汽轮机转子的振动故障诊断[J].华南理工大学学报(自然科学版),2006,34(4):85-90. 被引量:13
  • 2韦江雄,余其俊,曾小星,白瑞英.混凝土中孔结构的分形维数研究[J].华南理工大学学报(自然科学版),2007,35(2):121-124. 被引量:58
  • 3刘时风.焊接缺陷声发射检测信号谱估计及人工神经网络模式识别研究[M].北京:清华大学,1996..
  • 4许凤旌 陈积懋.声发射技术在复合材料发展中的应用[J].新技术新工艺,2000,(8):371-376.
  • 5张平.集成化声发射信号处理平台的研究[M].北京:清华大学,2002..
  • 6陈玉华.基于全波形声发射技术的应用研究[M].北京:清华大学,2002..
  • 7傅祖芸.信息论--基础理论与应用.北京:电子工业出版社,2001;24-25
  • 8张贤达.现代信号处理方法.北京:清华大学出版社,2002:102-103
  • 9杨福生.小波变换的工程分析与应用.北京:科学出版社,1999;33-35
  • 10Svaldo A Rosso, Susana Blanco, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods,2001; 105: 65-75

共引文献87

同被引文献57

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部