期刊文献+

基于期望系统噪声模型的自适应机动目标跟踪

An Adaptive Method of Tracking Multiple Maneuvering Targets Based on Estimation of System Noise Model
下载PDF
导出
摘要 针对防空作战中的机动目标跟踪问题,分析了使用IMM算法跟踪目标所存在的缺陷,提出了一种基于期望系统噪声模型的自适应机动目标跟踪算法(MIMM),改变IMM算法使用固定模型集合的方法,IMM算法中作用权重较大的只是少部分更接近于实际系统的模型,通过对部分系统噪声模型进行自适应辨识,计算出最接近于系统实际噪声水平的模型——期望系统噪声模型(ES-NM)。这些模型作为IMM多模型集的子集,是在一定模型框架内所寻求出的一个(或多个)最优模型(集)。仿真结果证明了MIMM算法能够更好地描述目标机动,达到更理想的跟踪性能,其跟踪精度优于使用固定模型集的IMM算法。 For the problem of tracking maneuvering targets in background of air- defense and anti- ballistic missile, the defects of the IMM method in tracking maneuvering targets is analyzed, then a new algorithm named MIMM which is based on the estimation of system noise model is presented. In the MIMM method,the fixed model set is not about to be used again,instead, some models with greater affecting index are selected from the IMM model set and form a new submodel set in which models are more close to the real system model. By making adaptive recognition for some system noise models, the one (model set) which is (are) most close to the real system noise model is (are) calculated, that is estimation system noise model (ESNM). As the submodel set of the IMM model set, they are optimized as the best one. The simulation results proved that the MIMM algorithm could better describe the motion of maneuvering target and acquire ideal tracking performance, and its tracking precision is better than the IMM algorithm using fixed model set.
出处 《航空计算技术》 2009年第6期6-9,共4页 Aeronautical Computing Technique
基金 国家高技术研究发展计划(863计划)(***046)
关键词 IMM 机动目标跟踪 ESNM EMA IMM maneuvering target tracking ESNM EMA
  • 相关文献

参考文献7

  • 1Bloomer L, Gray J E. Are more models better? The effect of the model transition matrix on the IMM filter [ A ]. Proc. of the Thirty-fourth Southeastern Symposium on System Theory [ C ]. Alabama, USA. 2002:20 - 25.
  • 2Li X R. Multiple-Model Estimation with Variable Structure- Par II : Model-Set Adaptation [ J ]. IEEE Trans. Automatic Control ,2000,45 ( 11 ) :2047 - 2060.
  • 3Li X R, V P Jilkov. Expected-mode augmentation for multiple-model estimateon[ A ]. International conference on Information Fusion [ C ]. Montreal, QC, Canada : 1 - 10.
  • 4邓未央,王宝树.多传感器数据融合系统中的目标跟踪技术[J].计算机工程与设计,2004,25(10):1661-1663. 被引量:9
  • 5Bar-Shalom Y, Campo L. The effect of the common process noise on the two-sensor fused-track covariance [ A ]. IEEE Trans. On Aerospace and Electronic Systems, 1986,22 (6) : 803 - 805.
  • 6段战胜,韩崇昭.相关量测噪声情况下多传感器集中式融合跟踪[J].系统工程与电子技术,2005,27(7):1160-1163. 被引量:14
  • 7X Rong Li, Xiaorong Zhi, Youmin Zhang. Multiple-Model Estimation with Variable Structure Part Ⅲ:Model-Gruup Switching Algorithm[ J]. IEEE Transactions On Aerospace and Electronic Systems, 1999,35 ( 1 ) :225 - 241.

二级参考文献12

  • 1蔡庆宇 薛毅 等.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997.4-7.
  • 2Blackman S S, Popoli R F. Design and analysis of modern tracking system[M]. Norwood MA: Artech House, 1999.
  • 3Hashemipour H R, Roy S, Laub A J. Decentralized structures for parallel Kalman filtering[J]. IEEE Trans. on Automatic Control, 1988, 33(1): 88-93.
  • 4Gan Q, Harris C J. Comparison of two measurement fusion methods for kalman-filter-based multisensor data fusion[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(1): 273-280.
  • 5Roy S, Iltis R A. Decentralized linear estimation in correlated measurement noise[J]. IEEE Trans. on Aerospace and Electronic Systems, 1991, 27(6):939-941.
  • 6Fitzgerald R J. Analytic track solutions with range-dependent errors[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36(1): 343-348.
  • 7Li X R. Optimal linear estimation fusion for multisensor dynamic systems[A]. Proceedings of Workshop on Multiple Hypothesis Tracking-A Tribute to Sam Blackman[C]. San Diego, CA, 2003.
  • 8Li X R, Zhu Yunmin, Wang Jie, et al. Optimal linear estimation fusion-Part I: unified fusion rules[J]. IEEE Trans. on Information Theory, 2003, 49(9): 2192-2208.
  • 9Jin Xuebo, Sun Youxian. Optimal centralized state fusion estimation for multi-sensor system with correlated measurement noise [A]. Proceedings of 2003 IEEE Conference on Control Applications[C], Istanbul, Turkey, 2003. 770 -772.
  • 10Zhou B, Bose N K.Multitarget tracking in clutter:fast Algorithms for data associaion[J].IEEE Trans on Aerospace and Electronic Systems, 1993,AES-29(2):352-363.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部