期刊文献+

基于改进BP网络的航空发动机起动过程辨识 被引量:6

An Identification Model of Aeroengine Starting Based on Improved BP Neural Network
下载PDF
导出
摘要 利用某型发动机地面试验数据作为学习样本,采用改进BP神经网络的方法,建立了航空发动机起动过程动态模型。利用所建立的模型对起动性能进行了估算,估算结果与试验数据基本相符。结果表明,将改进BP神经网络用于起动模型的辨识是可行的,该模型具有精度高,推广性好的优点。对于用BP神经网络对发动机进行起动性能计算具有一定的理论指导意义和应用价值。 A dynamic identification model based on improved BP neural network is presented in this paper. It makes use of ground test data as learning samples. The start performance of aeroengine is estimated. Application results in aeroengine compressor show that this presented method possesses much better precision, which proves that the method is feasible and effective. This method is contributive and instructional for starting performance calculation for areoengine via improved BP neural network.
作者 梅晓川
出处 《航空计算技术》 2009年第6期58-61,共4页 Aeronautical Computing Technique
关键词 航空发动机 起动 改进BP网络 辨识 性能计算 aeroengine start improved BP neural network identification performance calculation
  • 相关文献

参考文献9

二级参考文献24

  • 1刘小勇,樊思齐.采用BP网络辨识航空发动机数学模型[J].航空动力学报,1996,11(2):153-156. 被引量:16
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3Sexton W R,A method to control turbofan engine starting byvarying compressor surge valve bleed[D],Thesis for master'sdegree of the Virginia Polytechnic Institute and State University,2001.
  • 4Vapnik V N.An overview of statistical learning theory [J]. IEEE transactions on neural networks,1999,10(5).
  • 5Vapnik V N.The nature of statistical learning theory[M].Springer-Verlag,New-York,2000.
  • 6Rumelhart D E, Hinton G E, Williams R J. Learninginternal repr esentatio ns by error propagation[A].Rumelhart D E James L.McClelland J L. Parallel di stributed processing: explorations in the microstructure of cognition[C], vol ume 1, Cambridge, MA:MIT Press, 1986.318~362.
  • 7Neural Network Toolbox User's Guide .The Mathworks,inc. 1999.
  • 8Fahlman S E. Faster-learning variations on back-propagation: an e mpirical study[A].Touretzky D,Hinton G,Sejnowski T. Proceedings of the 1988 C onnectionist Models Summer School[C].Carnegic Mellon University,1988,38~51.
  • 9Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks,1988,1:295~307.
  • 10Shar S, Palmieri F. MEKA-a fast, local algorithm for training feedforwa rd neural networks[A]. Proceedings of the International Joint Conference on Ne ural Networks[C]. IEEE Press, New York, 1990.41~46.

共引文献229

同被引文献51

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部