期刊文献+

迭代译码的级联Reed-Solomon乘积码与卷积码 被引量:1

Concatenated Reed-Solomon Product Code/Convolutional Code with Iterative Decoding
下载PDF
导出
摘要 该文提出用Reed Solomon(RS)乘积码作为外码,卷积码作为内码的级联码方案并且内外码间用Congruential向量生成的交织图案对RS码符号进行重排列。对此级联码采用的迭代译码基于成员码的软译码算法。当迭代次数达到最大后,通过计算RS码的校正子,提出一种纠正残余错误的方法,进一步提高了系统的误比特性能。仿真结果表明,在AWGN信道中与迭代译码的级联RS/卷积码相比,当误比特率为1e-5时,新系统的编码增益大约有0.4dB。 A concatenated coding scheme is proposed in this paper, which uses Reed-Solomon (RS) product code for outer code and convolutional code for inner code. The interleaving pattern, which is generated according to congruential sequence, is used to rearrange the symbols of RS product code .The iterative decoding of the concatenated coding scheme is based on the soft decoding of the component codes. When a given maximun number of iteration has been performed, a method is proposed to correct residual errors by computing the syndromes of RS codes. The simulation results show that coding gains up to 0.4 dB for a BER (Bit Error Rate) is of 1e-5 on the Gaussian channel comparison with concatenation RS/CC codes.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2917-2921,共5页 Journal of Electronics & Information Technology
基金 东南大学移动通信国家重点实验室自主研究项目(2008A10) 国家自然科学基金(60802007) 国家863计划项目(2009AA01Z235) 国家973计划项目(2007CB310603)资助课题
关键词 迭代译码 乘积码 Reed-Solomon(RS) 卷积码 Iterative decoding Product code Reed-Solomon (RS) Convolutional code
  • 相关文献

参考文献11

  • 1Nguyen M V, Ko K, and Lee W, et al.. A new scheme to predict erasures for Reed-Solomon decoder in T-DMB receiver. IEEE Transactions on Broadcasting, 2007, 53(2): 530-538.
  • 2Xu Chang-long. Soft decoding algorithm for RS-CC concatenated codes in WiMAX system. IEEE VTC 2007-spring. Proceedings. Vehicular Technology Conference, Dublin, Ireland, 22-25 April 2007: 740-742.
  • 3Aitsab O and Pyndiah R. Performance of concatenated Reed-Solomon convolutional codes with iterative decoding. IEEE GLOBECOM 97. Proceedings. Global Telecommunications conference, Phoenix, USA, 3-8 Nov. 1997: 934-938.
  • 4Pyndiah R, Glavieux A, Picart A, and Jacq S. Near optimum decoding of product codes. IEEE. GLOBECOM 94. Proceedings. Global Telecommunications conference, San Francisco, USA, 28 Nov.-2 Dec.1994: 339-343.
  • 5Aitsab O and Pyndiah R. Performance of reed-solomon block turbo code. IEEE GLOBECOM 96. Proceedings. Global Telecommunications conference, London, UK, 18-22 Nov. 1996: 121-125.
  • 6Rong Zhou, Le Bidan R, Pyndiah R, and Goalic A Low-complexity high-rate Reed-Solomon block turbo codes IEEE Transactions on Communications, 2007, 55(9) 1656-1660.
  • 7Le Bidan R, Pyndiah R, and Adde P. Some results on the binary minimum distance of Reed-Solomon codes and block turbo codes. IEEE. ICC2007. conference, Glasgow, Scotland Proceedings. communications 24-28 June 2007: 990-994.
  • 8Hirst S A, Honary B, and Markarian G. Fast chase algorithm with an application in turbo decoding. IEEE Transactions on Communications, 2001, 49(10): 1693-1699.
  • 9Chi Zhipei, Song Leitei, and Parhi K K. On the performance/complexity tradeoff in block turbo decoder design. IEEE Transactions on Communications, 2004, 52(2): 173-175.
  • 10Clark G C Jr and Cain J B. Error-Correction Coding for Digital Communications. New York: Plenum, 1981.

同被引文献18

  • 1Couvreur A, Gaborit P, Gaut|fier-Umafia V, et al: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes[J]. Designs, Codes and Cryptography, 2014, 73(2): 641 666.
  • 2Lin Sire and Costello D J. Error Control Coding [M]. 2nd Edition, London, UK: Prentice Hall, 2004: 153-175.
  • 3Tilavat V trod Shukla Y. Simplification of procedure for decoding Reed-Solomon codes using various algorithms: an introductory survey[J]. International Joual of Engineering Development and Research, 2014, 2(1): 279 283.
  • 4Wachter-Zeh A, Zeh A, and Bossert M. Decoding interleaved Reed-Solomon codes beyond their joint error-correcting capability[J]. Designs, Codes and CrgptogTphy, 2014, 71(2): 261-281.
  • 5Boito P. The Euclidean algorithm[J]. Structured Matrix Based Methods for Approa:imate Polynomial, 2009, 15(1): 45 58.
  • 6Park J I and Lee H. Area-efficient truncated Berlekamp- Massey arclfitecture for Reed-Solomon decoderIJ]. Electronics Letters, 2011, 47(4): 241-243.
  • 7Chen Y H, Truong T K, Chang Y, et al: Algebraic decoding of quadratic residue codes using Berlekamp-Massey algorithm[J]. Journal of InfoTwmtion Science and Engineering 2007, 23(1): 127-145.
  • 8Sarwate D V and Shanbhag N R. High-speed architectures for Reed-Solomon decoders[J]. IEEE Transactions on VLSI Systems, 2001, 9(5): 641:655.
  • 9Lin T C, Truong T K, Chang H C, et al: A future simplification of procedure for decoding nonsystematic Reed- Solomon codes using the Berlekamp-Massey algorithm[J]. IEEE Transactions on Communications, 2011, 59(6): 1555-1562.
  • 10Truong T K, Chen P D, Wang L J, et al: Fast, prime factor, discrete Fourier transform algorithms over GF(2m) for 8 _: m 10[J]. Information Sciences, 2006, 176(1): 1-26.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部