期刊文献+

近似骨架导向的归约聚类算法 被引量:12

Approximate Backbone Guided Reduction Algorithm for Clustering
下载PDF
导出
摘要 该文针对聚类问题上缺乏骨架研究成果的现状,分析了聚类问题的近似骨架特征,设计并实现了近似骨架导向的归约聚类算法。该算法的基本思想是:首先利用现有的启发式聚类算法得到同一聚类实例的多个局部最优解,通过对局部最优解求交得到近似骨架,将近似骨架固定得到规模更小的搜索空间,最后在新空间上求解。在26个仿真数据集和3个实际数据集上的实验结果表明,骨架理论对提高聚类质量、降低初始解影响及加快算法收敛速度等方面均十分有效。 In this paper, the characteristic of approximate backbone is analyzed and an Approximate Backbone guided Reduction Algorithm for Clustering (ABRAC) is proposed. ABRAC works as follows: firstly, multiple local optimal solutions are obtained by an existing heuristic clustering algorithm; then, the approximate backbone is generated by intersection of local optimal solutions; afterwards, the search space can be dramatically reduced by fixing the approximate backbone; finally, this reduced search space can be efficiently searched to find high quality solutions. Extensively wide experiments on 26 synthetic and 3 real-life data sets demonstrate that the backbone has significantly effects for improving the quality of clustering, reducing the impact of initial solution, and speeding up the convergence rate.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第12期2953-2957,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60805024) 教育部博士点基金(20070141020)资助课题
关键词 聚类问题 NP-难解 启发式算法 近似骨架 Clustering issue NP-hard Heuristic algorithm Approximate backbone
  • 相关文献

参考文献11

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1073
  • 2Drinesa P, Frieze A, and Kannan R, et al.. Clustering large graphs via the singular value decomposition [J]. Machine Learning, 2004, 56(1-3): 9-33.
  • 3Jain A K and Dubes R C. Algorithms for Clustering Data [M]. Prentice Hall, Englewood Cliffs, New Jersey, 1998: 10-89.
  • 4David A and Sergei V. k-means++: the advantages of careful seeding[C]. SODA 2007, New Orleans France, 2007: 1027-1035.
  • 5Amir A and Lipoka D. A K-mean clustering algorithm for mixed numeric and categorical data [J]. Data and Knowledge Engineering, 2007, 63(2): 503-527.
  • 6江贺,张宪超,陈国良.图的二分问题唯一全局最优解实例与骨架计算复杂性[J].科学通报,2007,52(17):2077-2081. 被引量:3
  • 7江贺,张宪超,陈国良,李明楚.二次分配问题的骨架分析与算法设计[J].中国科学(E辑),2008,38(2):209-222. 被引量:3
  • 8Valnir F J. Backbone guided dynamic local search for propositional satisfiability[C]. Proceeding of 9th International Symposium on Artificial Intelligence and Mathematics (AI & Math-06). Florida America, 2006: 100-108.
  • 9Zhang W X. Configuration landscape analysis and backbone guided local search: Part I: Satisifiability and maximum satisfiability [J]. Artificial Intelligence, 2004, 158(1): 1-26.
  • 10He J, Tan A H, and Tan C L, et al.. On quantitative evaluation of clustering systems[C]. Information Retrieval and Clustering. Kluwer Academic Publishers, ISBN 1-4020-7682-7, 2003.

二级参考文献4

共引文献1073

同被引文献118

引证文献12

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部