期刊文献+

高耐磨药芯焊丝堆焊组织及基体选择 被引量:3

Microstructure of hardfacing metal and matrix materials with high abrasive flux-cored wire
下载PDF
导出
摘要 制备了高铬铸铁型自保护药芯焊丝,并采用此焊丝分别在Y-Ni4铸铁、65Mn钢、40Cr钢和灰口铸铁基体上进行堆焊.对不同堆焊试样进行硬度测试,对堆焊金属及其结合部位进行显微组织及断口形貌观察.结果表明,堆焊金属硬度在60HRC以上,断裂方式均为解理断裂.65Mn钢堆焊试样熔合较好,且基本无裂纹,可在受冲击载荷较大的条件下使用;Y-Ni4铸铁堆焊试样熔合良好,但在热影响区存在裂纹,应在冲击载荷较小或不受冲击载荷条件下使用;40Cr和灰铸铁堆焊试样熔合不好,熔合区存在许多缺陷,不宜作为耐磨堆焊基体材料. Four matrix materials,Y-Ni4 cast iron,65Mn steel,40Cr steel and grey cast iron,were hardfaced by the high chromium cast iron of self-shielded flux-cored wire separately.The hardness of different hardfacing specimens was measured,and the microstructures,fracture morphologies and the binding sites of different hardfacing specimens were observed.The results show that the hardness of the hardfacing metal is over 60 HRC and the fracture is of cleavage type.The fusion zones of 65Mn and Y-Ni4 hardfacing metal are good ones.However,the cracks can be observed in the heat-affected zone of Y-Ni4 hardfacing specimen.Therefore,the hardfacing metal of 65Mn steel is suitable for the condition of high stress wear and Y-Ni4 cast iron is suitable for the lower one.Besides,there are many defects in the fusion zone of 40Cr and grey cast iron hardfacing specimens,which are not suitable for the wear resistant matrix materials.
出处 《焊接学报》 EI CAS CSCD 北大核心 2009年第12期69-72,共4页 Transactions of The China Welding Institution
基金 河北省科技攻关资助项目(04212201D) 河北省百名优秀人才支持计划资助项目(09215106D)
关键词 药芯焊丝 堆焊金属 结合部位 显微组织 flux-cored wire hardfacing metal binding sites microstructure
  • 相关文献

参考文献9

二级参考文献31

共引文献97

同被引文献30

  • 1谢长生,王爱华,黄开金,朱蓓蒂,陶曾毅.铸铁表面激光熔覆裂纹的形成原因[J].钢铁,1994,29(8):48-53. 被引量:10
  • 2CUI Chen-yun, GUO Zuo-xing, WANG Hong-ying,et al. In situ TiC particles reinforced grey cast iron composite fabricated by la- ser cladding of Ni-Ti-C system[J]. Journal of Materials Process- ing Technology, 2007, 183(2-3): 380-385.
  • 3TONG Xin, ZHOU Hong, REN Lu-quan, et al. Thermal fatigue characteristics of gray cast iron with non-smooth surface treated by laser alloying of Cr powder[J]. Surface and Coatings Technol- ogy, 2008, 202(12): 2527-2534.
  • 4PANAYOTOVA M. Deposition of Fe-C alloy on structural steel and cast iron for repair of worn machine parts[J]. Surface and Coatings Technology, 2000, 124(2-3): 266-267.
  • 5NAVAS C, CONDE A,FERNANDEZ B J, et al. Laser coatings to improve wear resistance of mould steel[J]. Surface and Coat- ings Technology, 2005, 194(1): 136-142.
  • 6DONG S Y, XU B S, WANG Z J, et al. Laser remanufacturing technology and its applications[C] //Lasers in Material Process- ing and Manufacturing III. Beijing: Proc of SPIE, 2007: 6825IN. 1-6.
  • 7ZHONG M L, LIU W J, NING G Q, et al. Laser direct manu- facturing of tungsten nickel collimation component[J]. Materials Processing Technology, 2001, 147(2) : 167-173.
  • 8SHEPELEVA L, MEDRES B, KAPLAN W D, et al. Laser cladding of turbine blades[J] Surface and Coatings Technology, 2000, 125(1-3):45-48.
  • 9Sabet H, Khierandish S, Mirdamadi S,et al. The Microstructure and Abrasive Wear Resistance of Fe-Cr-C Hardfacing Al- loys with the Composition of Hypoeutectic, Euteetic, and Hypereuteetic at Cr/C = 6 . Tribol Lett, 2011,44 (2) : 237- 245.
  • 10周野飞,杨育林,刘利刚,等.钛含量对Fe-Cr-C堆焊合金显微组织的影响[c]//第5届海内外中华青年材料科学技术研讨会暨第13届全国青年材料科学技术研讨会论文集,2011:90-98.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部