期刊文献+

日径流预测方法研究 被引量:3

Study on daily runoff forecasting method
下载PDF
导出
摘要 运用自回归方法、多元线性回归方法和人工神经网络方法分别对汛期和非汛期的日径流量进行了预测,汛期预报因子又分别用有降水因子和无降水因子进行了预测。预测结果表明:非汛期的预测精度较高,汛期预测效果较差。另外,在汛期,有降水因子的预测结果要比没有降水因子预测效果好。 Autogressive method, multiple linear regression and artificial neural networks method are used to forecast the daily run-off in flood season and in low water season. In flood season, the forecasting factors are daily rainfall and no rainfall respectively.The forecasting result shows that the forecasting precision in low water season is better than that in flood season. And in flood season, the forecasting result with rainfall and prevenient daily flow factors is better than that with only. prevenient daily flow.
出处 《水科学与工程技术》 2009年第6期11-14,共4页 Water Sciences and Engineering Technology
关键词 自回归模型 多元线性回归 人工神经网络模型 径流预测 autogressive model multiple linear regression artificial neural networks model runoff forecasting
  • 相关文献

参考文献5

二级参考文献5

共引文献112

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部