期刊文献+

光学外差法产生微波信号特性的研究 被引量:4

Research on Characteristics of Microwave Signals Generated by Optical Heterodyne
下载PDF
导出
摘要 采用光学外差技术产生微波信号,是利用两个光信号之间的频率差,这个频率差就是微波信号的频率。光信号的一些参数变化会影响产生的微波信号,针对偏振、初相位、谱线宽度等影响因素,进行了深入的理论分析与推导,并对推导的结果进行仿真,得到了随着这些参数的改变导致所产生的微波信号特性的一些变化规律。 A microwave signal produced by optical heterodyne technology is based on the frequency deviation of two optical signals, which is the frequency of the microwave signal. Some optical parameters can affect the generated microwave signal, and for these influencing factors, such as polarization, initial phase, and line width, analysis and derivations are conducted. And the results of the derivation are simulated, and the relationship between the changes of microwave signal and these parameters is obtained.
出处 《半导体光电》 CAS CSCD 北大核心 2009年第6期955-957,965,共4页 Semiconductor Optoelectronics
关键词 光生微波 光学外差法 偏振 谱线宽度 optical generation of microwave optical heterodyne polarization line width
  • 相关文献

参考文献6

  • 1Ng'oma A. Radio-over-fibre technology for broadband wireless communication systems[D]. Netherland: Eindhoven University of Technology, 2005.
  • 2Das N K,Karmaka/ N C, Roy S M. Study of optical fregueney multiplication for radio-over-fiber systems[C]//Proc. IEEE Antennas and Propagation Society International Symposium, 2006 : 3465-8468.
  • 3朱美伟,林如俭,叶家骏,修明磊.使用双电极Mach-Zehnder调制器产生毫米波的新型mm-ROF系统[J].光电工程,2008,35(4):126-130. 被引量:9
  • 4Chrostowski L, Moewe M, Zhao W, et al. 39 GHz intrinsic bandwidth of a 1. 55 μm injection-locked VCSEL[C]//Proc. Conference on Laser and Electrooptics, 2004 : 2-3.
  • 5Johansson L A, Seeds A J. 36-GHz 140-Mb/s radioover-fiber transmission using an optical injection phase- lock loop source[J]. IEEE Photon. Technol. Lett. , 2001,13(8): 893-895.
  • 6祝华宁.光电子器件微波封装和测试[M].北京:科学出版社,2007:93-98.

二级参考文献11

  • 1Kuri T, Kitayama K. Optical heterodyne detection technique for densely multiplexed millimeter-wave-band radio-on-fiber systems [J], IEEE Journal of Llghtwave Technology, 2003, 21(12): 3167-3179,
  • 2Hofstetter R, Schmuck H, Heidemann R. Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation [J]. IEEE Transactions on Microwave Theory and Techniques, 1995, 43(9): 2263-2269.
  • 3Wake D, Lima C R, Davies P A. Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser [J], IEEE Transactions on Microwave Theory and Techniques, 1995, 43(9): 2270-2276
  • 4O'Reilly J, Lane P. Remote delivery of video services using mm-waves and optics [J], IEEE Journal of Lightwave Technology, 1994, 12(2): 369-375.
  • 5Walker N G, Wake D, Smith I C. Efficient millimeter-wave signal generation through FM-IM conversion in dispersive optical fiber links [J]. Electronics Letters, 1992, 28(21): 2027-2028.
  • 6Larrode M G, Koonen A M J, Olmos J J V, et al. A bidirectional radio-over-fiber link employing optical frequency multiplication [J]. IEEE Photonics Technology Letters, 2006, 18(1): 241-243.
  • 7Xiu Minglei, Qin Hailin, Lin Rujian, Study on Methods to Yield a Periodically Wavelength-swept Lightwave Signal Based on 60GHz Radio-over-Fiber System [J]. SPIE, 2006, 6025: 294-300.
  • 8Larrode M G, Koonen A M J, Olmos J J V, et al. Dispersion tolerant radio-over-fiber transmission of 16 and 64-QAM radio signals at 40GHz [J]. Electronics Letters, 2006, 42(15): 872-874.
  • 9Marti J, Fuster J M, Ramos F, et al. Optimization of millimeter-wave signal generation through FM-IM conversion in chirped fiber gratings [J]. Microwave and Optical Technology Letters, 2000, 27(6): 393-395.
  • 10Larrode M G, Koonen A M J, Olmos J J V. Overcoming modal bandwidth limitation in radio-over-multimode fiber links [J]. IEEE Photonies Technology Letters, 2006, 18(22): 2428-2430.

共引文献8

同被引文献31

  • 1李晶,宁提纲,祁春慧,贾楠.基于光学倍乘法产生光毫米波的全双工毫米波光纤传输系统设计[J].中国激光,2009,36(3):607-613. 被引量:5
  • 2魏志义.2005年诺贝尔物理学奖与光学频率梳[J].物理,2006,35(3):213-217. 被引量:18
  • 3韩海年,张炜,王鹏,李德华,魏志义,沈乃澂,聂玉昕,高玉平,张首刚,李师群.飞秒钛宝石光学频率梳的精密锁定[J].物理学报,2007,56(5):2760-2764. 被引量:15
  • 4Zhang J, Yu J, Chi N, et al.. Flattened comb generation using only phase modulators driven by fundamental frequency sinusoidalsources with small frequencyoffset[J]. Optics Letters, 2013, 38(4): 552 -554.
  • 5Ho Y Y K, Qian L. Dynamic arbitrarywaveform shaping inacontinuousfiher[J]. Optics Letters, 2008, 33(11): 1279- 1281.
  • 6Jiang Z, Huang C B, Leaird D E, et al.. Optical arbitrary waveform processing of more than 100 spectral comb lines[J]. Nature Photonics, 2007, 1(8): 463-467.
  • 7Geisler D J, Fontaine N K, He T, et al.. Modulatiowformat agile, reconfigurable Tb/s transmitter based on optical arbitrary waveform generation[J] . Optics Express, 2009, 17(18) : 15911-15925.
  • 8Scott R P, Fontaine N K, Heritage J P, et al.. Dynamic optical arbitrary waveform generation and measurement [J]. Optics Express, 2010, 18(18): 18655-18670.
  • 9Shang L, Wen A, Lin G, et al.. A flat and broadband optical frequency comb with tunable bandwidth and frequency spacing[J]. Optics Communications, 2014, 331: 262-266.
  • 10Preussler S, Wenzel N, Schneider T. Flat, rectangular frequency comb generation with tunable bandwidth and frequency spacin[J]. Optics Letters, 2014, 39(6): 1637-1640.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部