期刊文献+

基于动柔度修改的轴向振动控制系统鲁棒性分析 被引量:3

Robustness analysis of axial vibration control based on receptance modification method
下载PDF
导出
摘要 提出了采用动柔度秩2修改实现轴向振动结构被动控制的方法。该方法通过修改结构特性参数,如刚度和阻尼,使系统响应达到控制要求的目标;在此基础上进一步分析了系统响应对修改参数的灵敏度,讨论了振动控制系统的鲁棒性。仿真算例表明,所提出的基于动柔度修改的控制方法能够达到较为满意的控制效果,并有较好的鲁棒性。 A method of receptance modification was presented to realize,the axial vibration control of structures.In the method,modification of characteristic parameters,such as spring and damping coefficients,can make the vibration responses of the structure reach to the excepted requirement.The robustness of the control method was discussed.A numerical example shows that the method can get a satisfied result.
出处 《振动与冲击》 EI CSCD 北大核心 2009年第12期146-150,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(10672041) 国家自然科学基金重大研究计划资助项目(90716001)
关键词 动柔度 秩2修改 灵敏度 鲁棒性 receptance rank-two modification sensitivity robustness
  • 相关文献

参考文献9

  • 1Chih-Chergn Ho, Chih-Kao Ma. Active Vibration Control of Structural Systems by a Combination of the Linear Quadratic Gaussian and Input Estimation Approaches [ J ]. Journal of Sound and Vibration,2007,301:429 - 449.
  • 2Jose S M, Pedro G M, Cristovao M, et al. Optimal Dynamic Control of Laminated Adaptive Structures Using a Higher Order Model and a Genetic Algorithm [ J ]. Computers and Structures, 2008,86 : 198 - 206.
  • 3Mares C, Friswell M I, Mottershead J E. Model Updating Using Robust Estimation [ J ]. Mechanical Systems and Signal Processing,2002,16( 1 ) : 169 - 183.
  • 4Jing Yuan. Robust Vibration Control Based on Identified Models[ J]. Journal of Sound and Vibration,2004,269:3 - 17.
  • 5陈龙,陈建军,张雪峰.不确定结构振动的保成本鲁棒PID控制[J].振动与冲击,2007,26(6):79-81. 被引量:6
  • 6Mottershead J E, Mares C, Friswell M I. An Inverse Method for the Assignment of Vibration Nodes [ J ]. Mechanical Systems and Signal Processing ,2001,15 ( 1 ) : 87 - 100.
  • 7Mehmet Bulent Ozer, Royston T J. Application of Sherman- Morrison Matrix Inversion Formula to Damped Vibration Absorbers Attached to Multi-degree of Freedom Systems [ J ]. Journal of Sound and Vibration ,2005,283 : 1235 - 1249.
  • 8Zhu Jianfeng, Mottershead J E, Kyprianou A. An Inverse Method to Assign Receptances by Using Classical Vibration Absorbers [J]. Journal of Vibration and Control,2009,15:53.
  • 9Goldfarb D. Modification Methods for Inverting Matrices and Solving Systems of Linear Equations[ J]. Mathematics of Computation, 1972,26(120) :829 - 852.

二级参考文献11

  • 1林嗣廉,徐博侯.柔性结构振动的独立模态H_∞控制[J].浙江大学学报(工学版),2001,35(1):47-52. 被引量:10
  • 2刘岑枫,胡刚,任俊超.不确定广义系统的H_∞保成本控制[J].电机与控制学报,2005,9(2):124-127. 被引量:5
  • 3俞立.鲁棒控制[M].北京:清华大学出版社,2002.41-59.
  • 4Astrom k J,Hogglund T.PID Controllers:Theory,Design and Tuning[M].Research Triangle Park:Instrument Society of America,1995.
  • 5Tan W,Chen T,Marquez H J.Robust Controller design and PID tuning for multivariable process[J].Asian J of Control,2002,4(4):439-451.
  • 6Zheng Feng,Wang Qingguo,Lee Tongheng.On the design of multivariable PID controllers via LMI approach[C].The 27th Annual Conference of the IEEE Industrial Electronics Society,2001,776-781.
  • 7Chang S SL,Peng T KC.Adaptive guaranteed cost control of systems with uncertain parameters[J].IEEE Trans Autom Control,1972,AC-17(4):474-483.
  • 8Meirovitch L,Baruh H.A comparison of control techniques for large flexible systems[J].Guidance,1983,6(4):302-310.
  • 9Sridhar Sana,Vittal S Rao.Application of linear matrix inequalities in the control of smart structural systems[J].Journal of Intelligent Material System & Structure,2000,11:311-323.
  • 10Cao Y Y,Sun Y X.Static output feedback stabilization:An ILMI approach[J].Automatic,1998,34:1641-1645.

共引文献5

同被引文献23

  • 1胡宇宏.结构损伤诊断的动柔度方法[J].湖南大学学报(自然科学版),2002,29(S1):72-76. 被引量:1
  • 2王巍,于登云,马兴瑞.航天器铰接结构非线性动力学特性研究进展[J].力学进展,2006,36(2):233-238. 被引量:22
  • 3钱辉,李宏男,宋钢兵,赵大海.基于塑性理论的形状记忆合金本构模型、试验和数值模拟[J].功能材料,2007,38(7):1114-1118. 被引量:20
  • 4VapnikV N.统计学习理论的本质.2版.张学工,译.北京:清华大学出版社,2000.
  • 5Budak E, Ozguven H N. Iterative receptance method for determining harmonic response of structures with symmetri- cal non-linearities. Mechanical Systems and Signal Process- ing, 1993,7(1):75 -87.
  • 6Tanrikulu O, Kuran B, Ozguven H N, Imregun M. Forced harmonic response analysis of non-linear structures using describing functions. AIAA Journal, 1993,31 (7) : 1313 - 1320.
  • 7Ozer M B, Ozguven H N, Royston T J. Identification of structural non-linearities using describing functions and the Sherman-Morrison method. Mechanical Systems and Signal Processing, 2009,23 ( 1 ) :30 - 44.
  • 8Arslan O, Aykan M, Ozguven H N. Parametric identifica- tion of structural nonlinearities from measured frequency re- sponse data. Mechanical Systems and Signal Processing, 2011,25(4) :1112 - 1125.
  • 9Wei F, Zheng G T. Nonlinear vibration analysis of space- craft with local nonlinearity. Mechanical Systems and Signal Processing, 2010,24 ( 2 ) :481 - 490.
  • 10Peng Z K, Lang Z Q, Chu F L, Meng G. Locating nonlin- ear components in periodic structures using nonlinear effects. Structural Health Monitoring, 2011,9 ( 5 ) : 401- 411.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部