期刊文献+

一类解耦非线性双曲守恒律系统的广义黎曼问题 被引量:1

Generalized Riemann Problem for a Class of Decoupled Nonlinear Hyperbolic System of Conservation Laws
下载PDF
导出
摘要 研究一类解耦非线性双曲守恒律系统的广义黎曼问题.在适当的初值条件下,构造了该问题的狄拉克激波(δ-激波)解,并证明了包含δ-激波的整体间断解的存在唯一性. The generalized Riemann problem for a class of deeoupled nonlinear hyperbolic system of conservation laws is studied. Under a suitable condition of initial data, the Delta-shock solution is constructed, and the existence and uniqueness of global discontinuous solutions containing one delta shock wave is proved.
机构地区 云南大学数学系
出处 《昆明学院学报》 2009年第6期15-20,共6页 Journal of Kunming University
基金 国家自然科学基金资助项目(10461010) 云南省自然科学基金资助项目(2007A020M)
关键词 双曲守恒律系统 狄拉克激波解 熵条件 广义黎曼问题 hyperbolic system of conservation laws Delta-shock wave entropy condition generalized Riemann problem
  • 相关文献

参考文献3

二级参考文献9

  • 1杨柳,盛万成.气体动力学压差方程一类波的相互作用[J].数学物理学报(A辑),2005,25(2):277-280. 被引量:3
  • 2丁夏畦,王振.用Lebesgue-Stieltjes积分定义的间断解的存在唯一性[J].中国科学(A辑),1996,26(2):109-119. 被引量:3
  • 3LAX P D.Hyperbolic systems of conservation laws and the mathematical theory of shock waves[Z].Philadelphia:SIAM,1973.
  • 4TAN De-chun,ZHANG Tong.Two dimensional Riemann problem fora hyperbolic system of nonlinear conservation laws (Ⅰ):Four-Jcases[J].Journal of Differential Equations,1994,111:203-254.
  • 5TAN De-chun,ZHANG Tong,ZHENG Yu-xi.Delta-shock wavesas limits of vanishing viscosity for hyperbolic systems of conversation laws[J].J Differential Equations,1994,112(1):1-32.
  • 6LE FLOCH P.An existence and uniqueness result for two nonstrictly hyperbolic systems[J].Ecole Polytechnique:Centre de Mathematiques Appliquees,1990,219:126-138.
  • 7LI Jie-quan,YANG Shu-li,ZHANG Tong.The two-dimensional Riemann problem in gas dynamics[M].New York:Longman Scientic and Technical,1998.
  • 8YANG Han-chun.Riemann problem for a class of coupled hyperbolic of conservation laws[J].Journal of Differential Equations,1999,159 (2):447-484.
  • 9杨汉春.具粘性项的非严格双曲守恒律组的定态解[J].云南大学学报(自然科学版),1997,19(3):304-308. 被引量:1

共引文献3

同被引文献14

  • 1TATISAN L I. Gobal classical solutions for quasi-linear hyperbolic systems [ M ]. New York :John Wiley & Sons, 1994:32.
  • 2CHAPLYGIN S A. On gas jets [ J ]. Scientific Memoirs Moscow University Mathematic Physics, 1904,21:1 - 121.
  • 3梅风翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999.
  • 4TSIEN H S. Two dimensional subsonic flow of compressible fluids[ J]. J Aeron Sci, 1939 (6) :399 -407.
  • 5KARMAN T V. Compressibility effects in aerodynamics[ J ]. J Aeron Sci, 1941 (8) :337 -365.
  • 6SAHNI V. Dark Matter and Dark Energy[ J ]. Lect Notes Phys,2004,653:141 - 180.
  • 7ZHANG Xin, WU Feng-quan, ZHANG Jing-fei. New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter[ J ]. J Cos Astro Phys,2006,601 : 3.
  • 8NORMAN C ,SAMUEL L,FRANCISCO P. Dissipative generalized Chaplygin gas as phantom dark energy Physics[J]. Phys Lett B,2007,646(4) :177 - 182.
  • 9SETARE M R. Holographic Chaplygin gas model[ J~. Phys Lett 13,2007,648 (5) :329 -332.
  • 10SETARE M R. Interacting holographic generalized Chaplygin gas model[ J]. Phys Lett B,2007,654:1 -6.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部