期刊文献+

InP/In_xGa_(1-x)As异质结构中Zn元素的扩散机制 被引量:2

Zn diffusion mechanism in InP/In_xGa_(1-x)As hetero structure
下载PDF
导出
摘要 采用闭管扩散方式实现了Zn元素在晶格匹配InP/In0.53Ga0.47As及晶格失配InP/In0.82Ga0.18As两种异质结构材料中的P型掺杂,利用二次离子质谱(SIMS)以及扫描电容显微技术(SCM)对Zn在两种材料中的扩散机制进行了研究。SIMS测试表明:Zn元素在晶格失配材料中的扩散速度远大于在晶格匹配材料中的扩散速度,而SCM测试表明:两种材料中的实际PN结深度与SIMS测得的Zn扩散深度之间存在一定的差值,这是由于扩散进入材料中的Zn元素并没有被完全激活,而晶格失配材料中Zn的激活效率相对更低,使得晶格失配材料中Zn元素扩散深度与PN结深度的差值更大。SCM法是一种新颖快捷的半导体结深测试法,对于半导体器件工艺研究具有重要的指导意义。 Zn diffusion experiments were carried out for the lattice-matched InP/In0.83Ga0.47As and the lattice-mismatched InP/In0.82Ga0.18As hetero structures using the closed tube diffusion. Secondary ion mass spectroscopy (SIMS) and scanning capacitance microscopy (SCM) techniques were used to study the diffusion mechanism of ZN in the two samples. The SIMS measurement results show that Zn has a larger diffusion velocity in the lattice-mismatched samples than in the lattice-matched samples. However, there were differences between the Zn diffusion depth measured by SIMS and PN junction depth measured by SCM in both materials. The reason is that the diffused Zn in these structures isn't completely activated. And in the lattice-mismatched sample Zn has an even smaller activation ratio, thus the difference between Zn diffusion depth and PN junction depth is even greater. These results show that the SCM technique is a novel and quick measurement method of junction depth, it is guidance for the research of semiconductor device process.
出处 《红外与激光工程》 EI CSCD 北大核心 2009年第6期951-956,共6页 Infrared and Laser Engineering
基金 国家自然科学基金重点资助项目(50632060) 中国科学院知识创新工程青年人才领域前沿资助项目(C2-32 C2-50)
关键词 二次离子质谱 扫描电容显微技术 ZN扩散 Secondary ion mass spectroscopy (SIMS) Scanning capacitance microscopy (SCM) Zn diffusion
  • 相关文献

参考文献13

  • 1MOY J p, HUGON X, CHABBAL J J, et al. 3000 InGaAs photodiode multiplexed linear array for SPOT4 SWIR channel [C]//Proeeedings of SPIE, Infrared Detectors, Focal Plane Arrays, and Imaging Sensors,1989,1107:137-151.
  • 2HOOGEVEEN R W M, RONALD J vat der A, GOEDE A P H. Extended wavelength InGaAs infrared (1.0-2.4 p,m) detector arrays on SCIAMACHY for space-based spectrometry of the earth atmosphere[J].Infrared Physics & Technology, 2001,42(1): 1-16.
  • 3张可锋,吴小利,唐恒敬,吕衍秋,乔辉,贾嘉,李雪,龚海梅.LBIC技术研究平面结与台面结InGaAs探测器[J].红外与激光工程,2007,36(z1):23-27. 被引量:1
  • 4唐恒敬,吴小利,张可锋,汪洋,贺香荣,李雪,龚海梅.InGaAs线列探测器的I-V特性研究[J].红外与激光工程,2008,37(4):598-601. 被引量:5
  • 5YUN I, HYUN K S. Zinc diffusion process investigation of InP-based test structures for high-speed avalanche photodiode fabrication [J].Mieroeleetronics Journal, 2000,31:635-639.
  • 6MARTIN H E, MICHAEL J L, SUGG A R, et al. Zinc diffusion in InAsP/InGaAs heterostructures [J]. Journal of Electronic Materials, 1999,28( 12): 1433-1439.
  • 7TODD H, ALBERT K H, CHRIS L, et al. Capacitive effects on quantitative dopant profiling with scanned electrostatic force microscopes[J].J Vac Sei Teehnol B,1996,14(1):457-462.
  • 8ROGER A, BRYANT M, MICHAEL Y. Junction metrology by cross-sectional atomic force microscopy[J].J Vae Sci Tehnol B, 1996,14(1) :452-456.
  • 9KOPANSKI J J, MARCHIANDO J F, BERNING D W. Scanning capacitance microscopy measurement of two -dimensional dopant profiles across junctions[J].J Vae Sci Technol B, 1998,16 (1):339-343.
  • 10BUH G H, CHUNG H J, YI J H, et al. Electrical characterization of an operating Si pn-junction diode with scanning capacitance microscopy and Kelvin probe force microscopy[J].J Appl Phys, 2001,90(1):443-448.

二级参考文献12

  • 1郝国强,张永刚,刘天东,李爱珍.InGaAs PIN光电探测器的暗电流特性研究[J].半导体光电,2004,25(5):341-344. 被引量:22
  • 2[1]OLSEN G H,JOSHI AM,BAN V S.Current status of InGaAs detector arrays for 1-3 μm[C]//Proceedings of SPIE,Infrared Technology XVII,San Diego,California,1991,1540:596-605.
  • 3[2]HONDT M D',moerman i,demeesterp.dark current optimisatinn of 2.5 um wavelength.2% Mismatched InGaAs Photodetectors on InP[C]//Proceedings of IEEE,10th Intern Conf On Indium Phosphide and Related Materials,Tsukuba,Japan,1998,1:489-492.
  • 4[3]JOSHIA M,BANV S,MASONS,et al.Kosonocky.512 and 1024 element linear InGaAs detector arrays for near infrared(1-3 μm)environmental sensing[C]//Proceedings of SPIE,Infrared Detectors State of The Art,San Diego,California,1992,1735:287-295.
  • 5[4]Olsen G H,Joshi A M,Ban V S.et al.Multiplexed 256 element InGaAs detector arrays for 0.8-1.7μm room-temperture operation[C]//Proceedings of SPIE,Infrared Technology XⅣ,San Diego,Califonga,1988,972:279-285.
  • 6[5]KOZLOWSKI L J,TENNANT W E,ZANDIAN M,et al.SWIR staring FPA perfrormance at room temperature[C]//Proceedings of SPIE Infrared Detectors and Focal Plane Arrays Ⅳ,1996,2746:93-100.
  • 7[6]MOYJ ECHABBAL J J,CHAUSSAT S,et al.Buttable arrays of 300 multiplexed InGaAs photodiodes for SWIR imaging[C]//Proceedings of SPIE,Infrared Detectors,Sensors and Focal Plane Arrays,San Diego,California,1986,686:93-95.
  • 8[7]MOY J P HUGON X,CHABBAL J,et al.3000 InGaAs photodiode multiplexed linear array for SPOT4 SWIR channel[C]//Proceedings of SPIE,1989,1107:137-151.
  • 9[8]RUUD W M,HOOGEVEEN,RONALD J.et al.Extended wavelength InGaAs infrared(1.0-2.4μm)detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere[J].Infrared Physics & Technology,2001.42:1-16.
  • 10[9]DAVE H,DEWAN C,PAUL S.et al.AWtFS Camera For Resourcesat[C]//Proceedings of SPIE,2006,6405:6405X01-6405X11.

共引文献4

同被引文献4

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部