期刊文献+

广义T应力对裂纹应力强度因子的影响 被引量:6

Effect of general T-stress on stress intensity factor of a crack
下载PDF
导出
摘要 裂纹尖端的奇异应力场可以表达为Williams级数展开的形式,其中常数项(即T应力项)和非奇异项对裂纹尖端的应力应变场有着很大的影响,这些影响反过来作用于裂纹应力强度因子的计算.将T应力项和非奇异项合称为广义T应力,提出一种用特征分析法和边界元法配合求解广义T应力的新思路,可以根据需要任意选取广义T应力的项数,进而研究广义T应力对应力强度因子计算的影响.结果表明,考虑广义T应力项的应力强度因子计算结果与实验结果更加接近. The singular stress field at a crack tip can be presented by the Williams series, where the constant term is named T-stress. The constant term and non singular terms, which are called general T- stress here, play a significant role in determining the stress and strain fields around a crack tip which in turn can affect the calculation of stress intensity factor (SIF) of the crack. Herein, a new method which combines the singularity eigen-analysis with the boundary element method was proposed to determine the general T-stress in the crack tip. Then the effect of the general T-stress on the calculation of the stress intensity factor of a crack was studied. The numerical results show that the stress intensity factors taking account into the general T-stress are more proximate to the experiment results.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第12期1319-1322,共4页 JUSTC
基金 合肥工业大学科学研究发展基金(GDBJ2009-056)资助
关键词 裂纹 广义T应力 应力强度因子 边界元法 crack general T-stress stress intensity factor boundary element method
  • 相关文献

参考文献13

  • 1Chongmin S, Zora V. Evaluation of dynamic stress intensity factors and T-stress using the scaled boundary finite-element method[J]. Engineering Fracture Mechanics, 2008, 75:1 960-1 980.
  • 2Profant T, Sevecek O, Kotoul M. Calculation of K- factor and T-stress for cracks in anisotropic biomaterials[J].Engineering Fracture Mechanics, 2008, 75:3 707-3 726.
  • 3Paulino G H, Kim J H. A new approach to compute T stress in functionally graded materials by means of the interaction integral method[J]. Engineering Fracture Mechanics, 2004, 71:1 907-1 950.
  • 4Fett T, Rizzi G. T-stress of cracks loaded by near-tip tractions[J].Engineering Fracture Mechanics, 2006, 73: 1940-1946.
  • 5Shahani A R, Tabatabaei S A. Effect of T-stress on the fracture of a four point bend specimen[J].Materials and Design, 2009, 30(7): 2 630-2 635.
  • 6Smith D J, Ayatollahi M R, Pavier M J. The role of Tstress in brittle fracture for linear elastic materials under mixed-mode loading[J]. Fatigue and Fracture of Engineering Material and Structures, 2001, 24: 137-150.
  • 7Chong Z, Li Z H. The effect of T-stress on crack inclusion interaction under mode I loading[J]. Mechanics Research Communications, 2007, 34:283-288.
  • 8Tvergaard V. Effect of T-stress on crack growth under mixed mode I- III loading[J]. International Journal of Solids and Structures, 2008, 45:5 181-5 188.
  • 9Yosibash Z, Szab B A. A note on numerically computed eigenfunctions and generalized stress intensity factors associated with singular points[J]. Engineering Fracture Mechanics, 1996, 54: 593-595.
  • 10Niu Z R, Ge D L, Cheng C Z, et al. Evaluation of the stress singularities of plane V-notches in bonded dissimilar materials[J]. Applied Mathematical Modelling, 2009, 33:1 776- 1 792.

同被引文献46

  • 1刘洋,何沛田,赵明阶.基于损伤断裂理论的岩石破坏机理研究[J].地下空间与工程学报,2006,2(6):1076-1080. 被引量:9
  • 2Williams M L. On the stress distribution at the base of a stationary crack[ J]. Applied Mechanics, 1957 (24) : 109 -114.
  • 3Ayatollahi M R, Pavier M J, Smith D J. Mode I cracks subjected to large T-stresses[J]. International Journal of Fracture, 2002(117) : 159 - 174.
  • 4Fett T. A green' s function for T-stress in an edge-cracked rectangular plate[ J]. Engineering Fracture Mechanics, 1997, 57 (4) : 365 -373.
  • 5Tong J. T-stress and its implications for crack growth[ J ]. Engineering Fracture Mechanics, 2002 (69) : 1325 - 1337.
  • 6Ayatollahi M R, Pavier M J. Smith D J. Determination of T-stress from finite element analysis for mode I and mixed mode I / II loading[ J ]. International Journal of Fracture, 1998 (91 ) :283 - 298.
  • 7Ayatollahi M R, Aliha M R M, Hassani M M. Mixed mode brittle fracture in PMMA-An experimental study using SCB speci- mens[ J]. Materials Science and Engineering, 2006,417( 1 ) : 348 - 356.
  • 8B. Cotterell,J.R. Rice.Slightly curved or kinked cracks[J].International Journal of Fracture.1980(2)
  • 9J.G. Williams, P.D. Ewing, Int. J. Fract. 8 (1972) 441-446.
  • 10Y. Ueda, K. Ikeda, T. Kao, M. Aoki, Eng. Fract. Mech. 18 (1983) 1131-1158.

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部