期刊文献+

真空罐内应用的太阳模拟灯阵热设计 被引量:1

Thermal design of solar simulation xenon lamp array used in vacuum
下载PDF
导出
摘要 为了解决太阳模拟灯阵整体放在真空罐内使用时的导热问题,采用热管导热的方案,设计了专门的氙灯导热机构。计算了液氮系统的导热能力,结果显示,真空罐液氮冷却系统的温度升高ΔT为2.0741K,小于其过冷度4K,表明真空罐液氮冷却系统完全可以将太阳模拟灯阵的热量导出。采用热管导热技术,设计了导热机构,用有限元分析法进行了热仿真分析,分析结果表明,氙灯阴阳极温度维持在100℃左右,氙灯灯泡维持在655℃左右,满足氙灯正常工作的温度条件;积分器和反射镜组件温度维持在200℃左右,椭球镜温度维持在135℃左右,亦满足正常工作的温度条件,从而验证了热设计的正确性。 In order to solve the problem of heat conduction of a solar simulation xenon lamp array used in a vacuum tank, a special heat conduction mechanism for xenon lamps is designed by using a heat pipe technology. The heat conduction ability of the cooling system is calculated, and the results indicate that the temperature change AT of liquid nitrogen cooling system is 2. 074 1 K, lower than a super cooling temperature of 4 K, which points out that the liquid nitrogen cooling system can export the heat of solar simulation xenon lamp array out from the vacuum tank. A heat conduction mechanism is designed, and the finite element analysis is used to carry out thermal simulation analysis. The thermal simulation analysis results show that the temperatures for the anode and cathode of xenon lamp and the bulb of xenon lamp are about 100 ℃ and 655℃, repectively. Moreover, the temperatures of an optical integrator and mirror are both about 200℃ and the temperature of an ellipsoidal mirror is about 135℃, which meets the normal working conditions for a long period. The results obtained prove that the thermal design is feasible and reasonable.
出处 《中国光学与应用光学》 2009年第6期489-494,共6页 Chinese Optics and Applied Optics Abstracts
基金 国家863高技术研究发展计划资助项目(863-2-5-1-13B)
关键词 太阳模拟灯阵 仿真分析 热设计 真空 solar simulation Xe flash-lamp array simulation analysis thermal design vacuum
  • 相关文献

参考文献4

二级参考文献25

  • 1唐琼辉,徐进良,李银惠,刘小龙.一种新型微热管传热性能的实验研究[J].热能动力工程,2006,21(4):350-354. 被引量:15
  • 2岂兴明,苏俊林,矫津毅.小型平板热管的传热特性[J].吉林大学学报(工学版),2006,36(5):669-672. 被引量:5
  • 3裴念强,郭开华,刘杰.半导体制冷在新型环路热管的应用计算[J].低温物理学报,2007,29(1):42-45. 被引量:10
  • 4曲伟,周岩,马鸿斌.尺度效应对脉动热管启动和运行的影响[J].工程热物理学报,2007,28(1):140-142. 被引量:17
  • 5GAUGLER R.S.Heat transfer device[P],US:US 2350348, 1944 - 06.
  • 6Grover G. M,, Cotter T. P., Erikson G, Fo Structure of very high thermal conductance[J]. Appl. Phys., 1964, 35(6) : 1990 - 1991.
  • 7VAFAI K,WANG W. Analysis of flow and heat transfer of an asymmetrical flat plate heat pipe. Int. J. Heat Mass Transfer, 1992,35(9) :2087 - 2099.
  • 8SOBHAN C B,GARTNELLA S V, UNNIKRISHNAN V V. A Computation Mode for the Transient Analysis of Flat Heat Pipes[C] .Inter Society Conference on Thermal Phenomena, 2000.
  • 9Jentung Ku. Operating Characteristics of Loop Heat Hpes. In:29th ICES, Denver, Colorado, America, 1999.
  • 10Michael Nikitkin. Evgenyi Kodyarov and Gennadyi Serov. Basics of Loop Heat Pipe Temperature Control. In:29th ICES. Denver, Colorado, America, 1999.

共引文献72

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部