期刊文献+

基于区域MRF的SAR图像快速分割算法 被引量:7

A Fast Algorithm for SAR Image Segmentation Using Region-Based MRF
下载PDF
导出
摘要 针对受相干斑噪声影响较严重的合成孔径雷达(SAR)图像,提出了一种基于边缘保持(EPR)的区域MRF快速分割算法。基于EPR的SAR图像表示方法包括各向异性扩散的相干斑降噪算法和分水岭变换两部分,该方法在存在相干斑噪声的情况下,能够有效地抑制过分割和在区域边界进行目标边缘的准确定位。将基于EPR的表示方法和区域MRF相结合,能够大幅减少优化过程的搜索空间,获得准确的分类结果和统计特性,同时减少了计算量和分割错误。将提出的算法用于一幅添加了各种不同噪声水平的合成图像和SAR海冰影像的分割中,实验结果证明了该算法的有效性。该算法与现有的区域MRF相比,实验结果证明新算法能够节约计算时间50%,同时提高了分割准确性,尤其是在相干斑噪声较强的区域。 A novel edge-preserving region (EPR)-based representation for synthetic aperture radar (SAR) images is proposed, which is incorporated with region-level MRF model to offer an efficient approach to the segmentation of SAR images. The EPR-based representations of SAR images is constructed by applying the speckle reduction anisotropic diffusion (SRAD) algorithm and the watershed transform, which aims at efficiently suppressing over-segmentation within homogeneous objects while accurately locating object edges at region boundaries in the presence of speckle noise. In combination with a region-level MRF, the EPR-based representation facilitates the segmentation process by largely reducing the search space of optimization process and improving parameter estimation of feature model, leading to considerable computational saving and less probability of false segmentation.
作者 杨学志 沈晶
出处 《工程图学学报》 CSCD 北大核心 2009年第6期98-106,共9页 Journal of Engineering Graphics
基金 国家自然科学基金资助项目(60672120)
关键词 计算机应用 图像分割 马尔可夫随机场 合成孔径雷达 各向异性扩散的相干斑降噪 computer application image segmentation MRF SAR SRAD
  • 相关文献

参考文献11

  • 1BRYANT T G, MORSE G B, NOVAKLM, et al. Tactical radars for ground surveillance [J]. The Linco n Labo ra to ry Jou rna l, 2000, 12(2): 341-354.
  • 2Bovik A C. On detecting edge in speckle imagery [J]. IEEE Trans. on Acoustic Speech and Signal Processing, 1988, 36(10): 1618-1627.
  • 3Soh L K, Tsatsoulis C. Unsupervised segmentation of ERS and RADARSAT sea ice images using multiresolution peak detection and aggregated population equalization [J]. Int. J. Remote Sensing, 1999, 20(15-16): 3087-3109.
  • 4Soh L K, Tsatsoulis C, Gineris D, et al. ARKTOS: An intelligent system for SAR sea ice image classification [J]. IEEE Trans. Geosci Remote Sensing, 2004, 42(1): 229-248.
  • 5Yu Q, Clausi D A. Filament preserving segmentation for SAR sea ice imagery using a new statistical model [J]. IEEE Trans. Geosci Remote Sensing, 2006, 44(12): 3678-3684.
  • 6Li S Z. Markov random field modeling in computer vision [M]. New York: Springer, 2001. 346-378.
  • 7Yu Q, Clausi D A. SAR sea-ice image analysis based on iterative region growing using semantics [J]. IEEE Trans. Geosci. Remote Sensing, 2007, 45(12): 3919-3931.
  • 8Yu Q, Clausi D A. IRGS: MRF based image segmentation using edge penalties and region growing [EB/OL]. to appear in IEEE Trans. Pattern Anal. Machine Intell. Available:http://www.eng.uwaterloo. ca/-dclausi/publications.html.
  • 9Yu Y, Acton S T. Speckle reducing anisotropic diffusion [J]. IEEE Trans. Image Processing, 2002, 11(11): 1260-1270.
  • 10Vincent L, Soille P. Watershed in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEE Trans. Pattern Anal. Mach. Intell., 1991, 13(6): 583-598.

同被引文献75

  • 1王隽,杨劲松,黄韦艮,王贺,陈鹏.多视处理对SAR船只探测的影响[J].遥感学报,2008,12(3):399-404. 被引量:3
  • 2孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46
  • 3周伟华,汪慧兰,罗斌.一种综合多种技术的SAR图像增强方法[J].安徽大学学报(自然科学版),2006,30(2):37-40. 被引量:1
  • 4ROTHROCK D,YU Y,MAYKUT G.Thinning of the arctic sea-ice cover[J].Geophysical Research Letters,2000,26 (23):3469-3472.
  • 5YANG X Z,CLAUSI D A.Evaluating SAR sea ice image segmentation using edge-preserving region-based MRFs[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2012,5 (5):1383-1393.
  • 6HAVERCAMP D,SOH L K,TSATSOULIS C.A dynamic local thresholding technique for sea ice classification[C].IEEE International Conference on Geoscience and Remote Sensing Symposium,Tokyo,Japan,1993:638-640.
  • 7CLAUSI D A,YUE B.Comparing co-occurrence probabilities and Markov random fields for texture analysis of SAR sea ice imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):215-228.
  • 8SOH L K,TSATSOULIS C,GINERIS D,et al.ARKTOS:An intelligent system for SAR sea ice image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(1):229-248.
  • 9YU Q,CLAUSI D A.Combine local and global features for image segmentation using iterative classification and region merging[C].The 2nd Canadian Conference on Computer and Robot Vision,Canada,2005:579-586.
  • 10DENG H,CLAUSI D A.Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43 (3):528-538.

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部