期刊文献+

带耗散的广义Camassa-Holm方程吸引子的维数估计

Dimension estimating of global attractors of the General Camassa-Holm equations with dissipation
下载PDF
导出
摘要 证明了一类带耗散的广义Camassa-Holm方程的整体吸引子具有有限的Hausdorff维数和分形维数. The finiteness of Hausdorff dimension and fraetal dimension of the global attractors of general Camassa- Holm equations withdissipative is proved.
作者 谌德 向新民
出处 《上海师范大学学报(自然科学版)》 2009年第6期566-572,共7页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(10771142)
关键词 广义Camassa—Holm方程 整体吸引子 HAUSDORFF维数 分形维数 General Camassa- Holm equation global attractor Hausdorff dimension fractal dimension
  • 相关文献

参考文献3

  • 1谌德,向新民.带耗散的广义Camassa-Holm方程的吸引子[J].应用数学与计算数学学报,2008,22(2):19-27. 被引量:1
  • 2TEMAM R. Infinete - dimensional systems in mechanics and physics 2nded[ M ]. NY : Springer - Verlag, 1997.
  • 3GHIDAGLIA J M. Weakly damped forced Korteweg - de Vries equations behave as a finite dimensional dynamical system in the long time [ J ]. J Diff Eq, 1988,74 : 369 - 390.

二级参考文献6

  • 1Camassa R., Holm D. An integrable shallow water equation with peaked solitons[J]. Phys. Rev. Letters, 1993, 71: 1661-1664.
  • 2Constantin A., Escher J. Global existence and blow-up for a shallow water equation[J]. Ann. Scuola Norm. Sup. Pisa CI. Sci., 1998, 26: 303-328.
  • 3Fois C., Holm D., Titi S. The three dimensional viscous Camassa-Holm equations and their relation to the Navier-Stokes equations and turbulence theory[J]. Journal of Dynamics and Differential Equations, 2002, 14(1): 1-35.
  • 4Constantin A. On the Cauchy problem for the periodic Camassa-Holm equation[J]. J. Diff. Equ, 1997, 141: 218-235.
  • 5Teman R. Infinete-Dimensional Systems in Mechanics and Physics [M](2nd ed.) Springer- Verlag, New York, 1997, 20-53.
  • 6徐光迎,杨灵娥.Camassa-Holm方程的初边值问题[J].南昌大学学报(理科版),2003,27(3):233-237. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部