期刊文献+

求解二阶常微分方程的并行块方法

Parallel block methods for second srder ordinary differential equations
下载PDF
导出
摘要 主要研究二阶常微分方程初值问题y″(x)=f(x,y)的数值方法及其数值稳定性.构造了一类适用于并行计算的并行块方法,分析了该类方法的收敛性,得到其最低可达收敛阶.基于线性试验方程y″(x)=-λ2y,提出了并行块方法的P-稳定性定义,获得了二维、三维和四维并行块方法为P-稳定的充分条件.数值例子说明理论结果是正确的. This paper deals with numerical methods for the second - order ordinary differential equations y"(x) = f(x,y) and their numerical stability property. A class of parallel block methods which are suitable for integrating these equations on parallel computers are proposed. The convergence of such methods is studied and their lowest attainable convergence orders have been obtained. Then we introduce a definition ofP - stability of parallel block methods based on the test equation y"(x) = - λ2y. Sufficient conditions for the 2 ,3 and 4 - dimensional block methods to be P - stable are established. Numerical experiments are conducted to verify our theoretical results.
出处 《上海师范大学学报(自然科学版)》 2009年第6期580-587,共8页 Journal of Shanghai Normal University(Natural Sciences)
基金 国家自然科学基金(10671130) 上海市科委基础研究项目(06JC14092) 上海市教委曙光计划项目(06SG45)
关键词 二阶常微分方程 并行块方法 收敛阶 P-稳定性 second-order ordinary differential equation parallel block method convergence order P - stability
  • 相关文献

参考文献14

  • 1CHAKRAVARTI P C, WORLAND P B. A class of self - starting methods for the numerical solution of y"= f(x,y) [J]. BIT,1971,11(4) : 368 -383.
  • 2FEHLBERG E. Klassische Runge - Kutta - Nystr" om Formeln mit Schrittweiten - Kontrolle far Differential gleichungen x" =f(t,x,x) [J]. Computing,1975,14(4) : 371 -387.
  • 3FRANCO J M, GOMEZ, RANDEZ L. Four - stage symplectic and P - stable SDIRKN methods with dispersion of high order[J]. Numerical Algorithms, 2001,26(4) : 347-363.
  • 4HAIRER E. Unconditionally stable methods for second order differential equations [ J ]. Numer Math, 1979,32 (4) : 373 - 379.
  • 5HAIRE E, WANNER G. A theory for Nystrom methods[ J]. Numer Math, 1976,25 (4) : 383 -400.
  • 6HENRICI P. Discrete Variable Methods for Ordinary Differential Equations[ M]. New York: Wiley, 1962.
  • 7JETSCH R. Complete characterization of multistep methods with an interval of periodicity for solving y"= f(x,y)[J].Math Comp, 1978,32(144) : 1108- 1114.
  • 8KRAMARZ L. Stability of collocation methods for the numerical solution of y" = f(x,y) [J]. BIT, 1980,20(2) : 215 -222.
  • 9LAMBERT J D, WATSON I A. Symmetric muhistip methods for periodic initial value problems [ J ]. IMA J Appl Math, 1976,18(2) : 189 -202.
  • 10PAPAGEORGIOU G, FAMELIS I T, TSITOURAS C. A P - stable singly diagonally implicit Runge - Kutta - Nystrom method[ J]. Numerical Algorithms, 1998,17(3 -4) : 345 - 353.

二级参考文献96

  • 1[1]R.L. Liboff Introductory Quantum Mechanics, AddisonWesley, Reading, MA, 1980.
  • 2[2]L.D.Landau, F.M.Lifshita, Quantum Mechanics, Pergamon Press, New York, 1965.
  • 3[3]T.E. Simos, P.S Williams, On finite difference methods for the solution of the Schrodinger equation, Comput.Chem, 23 (1999) ,513-554.
  • 4[4]J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial value problems, J. Inst. Math. Appl.,18 (1976) ,189-202.
  • 5[5]E.Harier et al, Sovling ODEs, I, Springer-Verlag,Berlin, 1989.
  • 6[6]L. Brusa, L. Nigro, A one-step method for direct integration of structual dynamic equations, Inter, J. Numer.Meth. Eng., 15 (1980),685-797.
  • 7[7]I. Galdwell, R.M. Thomas, Damping and phase analysis for some method for solving second order ordinary differential equations, Inter. J. Numer. Meth. Eng., 19( 1983), 495-505.
  • 8[8]R.M. Thomas, Phase properties of high order, almost Pstable formulae, BIT, 24 (1984),225-258.
  • 9[9]P.J.van der Houwen, B.P.Sommeijer, Linear multistep methods with reduced phase errors for computing periodic initial-value problems, IMA J. Numer. Anal, 4(1984) ,479-489.
  • 10[10]P.J. van der Houwen, B.P. Sommeijer, Explicit RungeKutta (-Nystrom)methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal.,24 (1987) , 595-617.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部