期刊文献+

古典ASS谱序列上的非平凡积(英文)

A Nontrivial Product in the Classical Adams Spectral Sequence
下载PDF
导出
摘要 通过May谱序列的方法,在古典ASS谱序列上证明了非平凡积k0δ^s+4∈ExtA^s+6,t(s)(Zp,Zp),当p≥11,0≤s≤p-4,t(s)=(s+4)p^3q+(s+3)p^2q+(s+4)pq+(s+2)q+s,其中q=2(p-1). The non-triviality of the product koδ^s+4 ∈Ext A^s+6,t(s) (Zp ,Zp) in the classical Adams spectral sequence is proved by explicit combinatorial analysis of the (modified) May spectral sequence, where p ≥ 11, 0 ≤ s p-4, t(s) = (s + 4)p^3 q+ (s + 3)p^2 q+ (s + 4)pq + (s+ 2)q+ s where q = 2(p-1).
出处 《延边大学学报(自然科学版)》 CAS 2009年第4期292-295,共4页 Journal of Yanbian University(Natural Science Edition)
关键词 球面稳定同伦群 ADAMS谱序列 MAY谱序列 stable homotopy groups of spheres Adams spectral sequence May spectral sequence
  • 相关文献

参考文献6

  • 1Adams J F. Stable Homotopy and Generalised Homology[M]. Chicago: University of Chicago Press, 1974.
  • 2Liulevieius A. The Factorizations of Cyclic Reduced Powers by Secondary Cohomology Operations[J].Mere Amer Math Soc, 1962:42.
  • 3Aikawa T. 3-Dimensional Cohomology of the Mop p Steenrod Algebra[J]. Math Scand, 1980, 47: 91- 1152.
  • 4Wang X, Zheng Q. The Convergence of δs^(n)h0hk[J]. Sci China Ser A, 1998,41(6):622-628.
  • 5Ravenel D C. Complex Cobordism and Stable Homotopy Groups of Spheres[M]. Orlando: Academic Press, 1986.
  • 6Liu Xiugui, Zhao Hao. On a Product in the Classical Adams Spectral Sequence[J]. Proc Amer Math Soc, 2009,137(7) :2489-2496.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部