摘要
通过May谱序列的方法,在古典ASS谱序列上证明了非平凡积k0δ^s+4∈ExtA^s+6,t(s)(Zp,Zp),当p≥11,0≤s≤p-4,t(s)=(s+4)p^3q+(s+3)p^2q+(s+4)pq+(s+2)q+s,其中q=2(p-1).
The non-triviality of the product koδ^s+4 ∈Ext A^s+6,t(s) (Zp ,Zp) in the classical Adams spectral sequence is proved by explicit combinatorial analysis of the (modified) May spectral sequence, where p ≥ 11, 0 ≤ s p-4, t(s) = (s + 4)p^3 q+ (s + 3)p^2 q+ (s + 4)pq + (s+ 2)q+ s where q = 2(p-1).
出处
《延边大学学报(自然科学版)》
CAS
2009年第4期292-295,共4页
Journal of Yanbian University(Natural Science Edition)
关键词
球面稳定同伦群
ADAMS谱序列
MAY谱序列
stable homotopy groups of spheres
Adams spectral sequence
May spectral sequence