期刊文献+

利用AR模型参数和BP神经网络辨识微震信号

Use of AR Model Parameters and BP Neural Network Identification Microseismic Signal
原文传递
导出
摘要 利用AR模型参数和BP神经网络,针对矿山微震信号具有频带较宽、谱成分丰富的特性,提出了对不同频率范围的信号和噪声进行滤波处理的方法。利用该方法可将噪声与信号分离以及将不同频段信号分解,从而达到滤波的目的。实验结果表明,利用AR模型参数和BP神经网络能够有效去除微震异常信号的噪声,可应用于微震信号的预处理和微震预测。 According to the characteristics of broad frequency and abundant spectral components of mine microseismic signal, we use AR model parameters and BP neural network to propose a method of filtering treatment for the signal and noise with different frequency ranges. We can use this method to separate noise and signal, and decompose different frequency band signals, so we can achieve the goal of filtering. The experimental results suggest that we can effectively remove the noise of microseismic abnormal signal by using AR model parameters and BP neural network,and this method can be used in the microseismic prediction and the pretreatment of microseismic signal.
作者 冀常鹏 何慧
出处 《世界科技研究与发展》 CSCD 2009年第6期1044-1046,1052,共4页 World Sci-Tech R&D
关键词 矿山微震信号 AR模型 辨识 BP神经网络 mine mieroseismic signal AR model identification BP neural network
  • 相关文献

参考文献5

  • 1潘一山.矿山微震的发生和破坏规律研究(博士后出站报告)[R].中国地震局地质研究所,2003,11:21-24.
  • 2Ji Changpeng, Liu Lili. Research on the measured signal processing by the stress sensor in the soft Rock [ C ]. 2009 Conference on Environmental Science and Information Application Technology (ESIAT 2009 ).
  • 3Ji Changpeng, Liu Lili. Real-time detection for anomaly data in microseismic monitoring system [ C]. 2009 International Conference on Computational Intelligence and Natural Computing (CINC 2009).
  • 4Ji Changpeng, Dai Wei. Signal extraction over noise [ C ]. The 5th International Conference on Natural Computation (ICNC09).
  • 5陆菜平,窦林名,吴兴荣,王慧明,秦玉红.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775. 被引量:106

二级参考文献8

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部