摘要
设TX是集合X上的全变换半群,E是X上的等价关系,则TE(X)={f∈TX∶(a,b)∈E,(f(a),f(b))∈E}是α-半群.设X是全序集,OE(X)={f∈TE(X)∶x,y∈X,x≤y f(x)≤f(y)}是TE(X)的α-子半群.对于ω-型全序集X上的凸等价关系E,F,确定了OE(X)和O(X)=OE(X)∩OF(X)的相容格.
Let T be the full transformation semigroup on a set X and E be an equivalence on X, then TE (X) = {f∈TX: axbitary (a, b) ∈E, (f (a), f (b)) ∈E} is an α-semigroup. Foratotallyorderedset X, OE (X) = {f∈TE(X):axbitary x,Y∈X,x≤y→(x)≤f(y)} ia an α-subsemigroup of TE (x). In this paper, for two convex equivalences E, F on the ω -type totally ordered set X, the suitable lattices of the α -semigroups OE (X) and O (X) =OE: (X) ∩OF (X) are determined.
出处
《河南理工大学学报(自然科学版)》
CAS
2009年第4期536-539,共4页
Journal of Henan Polytechnic University(Natural Science)
基金
河南省自然科学基金资助项目(0511010200)
河南省教育厅自然科学研究计划项目(2009A110007)
河南理工大学博士基金资助项目(B2009-56)
关键词
α-半群
全序集
保序映射
相容格
α -semigroup
totally ordered set
order- preserving map
suitable lattice