期刊文献+

超高斯贝塞尔光束在湍流大气中的传播 被引量:2

Propagation of SGB beam in turbulent atmosphere
下载PDF
导出
摘要 针对激光束在大气中传播时,大气湍流引起的光强起伏等现象限制光束实际应用的问题,研究了消除或者减小大气湍流对光束质量影响的方法。基于广义惠更斯菲涅耳原理,通过数值模拟研究了超高斯贝塞尔(SGB)光束在不同湍流强度下的轴向和横向光强分布。针对SGB光束在一定传播距离上具有无衍射性和自恢复性能的研究发现,在弱湍流大气环境中,尽管湍流强度的增大会加速轴上光强的衰减,但是在一定距离范围内,SGB光束仍然保持其无衍射特点。在弱湍流强度变化范围内,通过选择合适的孔径函数,可以将SGB光束的横向光强分布的峰值变化限制在不超过10%,表明SGB光束具有一定的抵制大气湍流干扰的能力。 Applications of laser beams to wireless communications are limited by the light intensity fluctuation caused by atmospheric turbulence when they propagate the atmosphere. In order to find out an approach to remove or decrease the effect of atmospheric turbulence on the beam quality, the axial and transverse light intensity distribution of the Super-Gaussian-Bessel (SGB) beam is investigated by means of a numeric simulation based on the general Huygens-Fresnel principle. As the SGB beam is characterized by its non-diffracting and self-reconstruction abilities over a certain propagation distance, it is proved that the axial intensity of the SGB beam is decreased under the influence of atmospheric turbulence, but its non-diffraction characteristics are still maintained over a certain propagation distance in the weak fluctuation. The peak intensity variation of the transverse intensity distribution of the SGB beam can be kept below 10 percent by selecting a proper aperture function in the range of weak fluctuation. These results show that the SGB beam has the ability to resist the influence of atmospheric turbulence.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2009年第12期2919-2923,共5页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.60578054 No.60877049) 天津市重点科学基金资助项目(No.08JCZDJC19300)
关键词 无衍射光束 超高斯贝塞尔光束 大气湍流 广义惠更斯菲涅耳原理 non-diffracting beam Super-Gaussian-Bessel (SGB) beam atmospheric turbulence general Huygens-Fresnel principle
  • 相关文献

参考文献9

  • 1EYYUBOGLU H T, HARDALAC F. Propagation of modified Bessel-Gaussian beams in turbulence[J]. Optics& Laser Technology, 2008,40 (2) : 343- 351.
  • 2EYYUBOGLU H T. Propagation of higher order Bessel Gaussian beams in turbulence[J]. Applied Physics B, 2007,88(2):259-265.
  • 3田芃,元秀华,张国云.大气湍流中受限高斯光束的轴向光强分布[J].量子电子学报,2007,24(3):352-356. 被引量:5
  • 4RICKLIN J C,DAVIDSON F M. Atmospheric optical communication with a Gaussian Schell beam [J]. J. Opt. Soc. Am, 2003,20(5) :856-866.
  • 5DURNIN J, MICELI J J,EBERLY J H. Diffraction -free beams[J]. Phys. Rev. Lett,1987,58(15) : 1499- 1501.
  • 6周莉萍,赵斌,李柱.无衍射光束理论与实现[J].光学精密工程,1997,5(4):14-19. 被引量:18
  • 7LEI M,YAO B L. Characteristics of beam profile of Gaussian beam passing through an axicon[J].Optics Communications, 2004,239(4-6) :367 -372.
  • 8JIANG Z P. Super-Gaussian-Bessel beam[J]. Optics Communications, 1996,125:207-210.
  • 9HERMAN R M,WIGGINS T A. Production and uses of diffractionless beams[J]. J. Opt. Soc. Am. A, 1991,8(6) :932-942.

二级参考文献10

  • 1Hail T E,et al.Average intensity and spreading of cosh-Gaussian laser beams in the turbulence atmosphere[J].Appl.Opt.,2005,44(6):976-983.
  • 2Ricklin J C,Davidson F M.Atmospheric turbulence effects on a partially coherent Gaussian beam:implications for free-space laser communication[J].J.Opt.Soc.Am,2002,19(9):1794-1802.
  • 3Hail T E,Yahya B.Analysis of reciprocity of cos-gaussian and cosh-gaussian laser beams in a turbulence atmospheric[J].Optics Express,2004,12(20):4659-4674.
  • 4Peter E A,et al.Modeling the optical coherence tomography geometry using the extended Huygens-Fresnel principle and Monte Carlo simulation[C].Proc.of SPIE,2003,5068:170-181.
  • 5Wang S C H,et al.Optical beam propagation for a partially coherent source in the turbulent atmosphere[J].J.Opt.Soc.Am,1979,69(9):1207-1304.
  • 6Yahya B.Average transmittance in turbulence for partially coherent sources[J].Optics Communications,2004,231:129-136.
  • 7Jennifer C R,Frederic M D.Atmospheric optical communication with a Gaussian Schell beam[J].J.Opt.Soc.Am,2003,20(5):856-866.
  • 8龚知本.激光大气传输研究若干问题进展[J].量子电子学报,1998,15(2):114-133. 被引量:31
  • 9饶瑞中,王世鹏,刘晓春,龚知本.激光在湍流大气中的光强起伏与光斑统计特征[J].量子电子学报,1998,15(2):155-163. 被引量:9
  • 10饶瑞中,王世鹏,刘晓春,龚知本.湍流大气中激光束漂移的实验研究[J].中国激光,2000,27(11):1011-1015. 被引量:35

共引文献21

同被引文献21

  • 1J. Durnin, J. J. Miceli, Jr. J. H. Eberly. Diffraction-free beam[J]. Phys. Rev. Lett., 1987, 58(13): 1499~1501.
  • 2P. L. Greene. Properties and diffraction of vector Bessel-Gauss beams[J]. J. Opt. Soc. Am. A, 1998, 15(12): 3020~2027.
  • 3T. Hakkaraine, A. Hakola, J. Jalava et al.. Generation of Bessel-Gauss beams and pulses with diode-pumped NdGdVO4 laser[R]. Optics and Molecular Material. Helsinki University of Technology, 2007.
  • 4J. Arlt, K. Dholakia. Generation of high-order Bessel beams by use of an axicon[J]. Opt. Commun., 2000, 177(1-6): 297~301.
  • 5H. T. Eyyuboglu. Propagation of higher order Bessel-Gaussian beams in turbulence[J]. Appl. Phys. B, 2007, 88(2): 259~265.
  • 6H. T. Eyyuboglu, F. Hardlac. Propagation of modified Bessel-Gaussian beams in turbulence[J]. Optics & Laser Technology, 2008, 40(2): 343~351.
  • 7Baosuan Chen, Ziyang Chen, Jixiong Pu. Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere[J]. Optics & Laser Technology, 2008, 40(6): 820~827.
  • 8Xuemei He, Dalü Bai. Propagation of partially coherent flat-topped vortex beams through non-kolmogorov atmospheric turbulence[J]. J. Opt. Soc. Am. A, 2011, 28(9): 1941~1948.
  • 9I. Toselli, B. Agrawal, S. Restaino. Light propagation through anisotropic turbulence[J]. J. Opt. Soc. Am. A, 2011, 28(3): 483~488.
  • 10B. E. Stribling, B. M. Welsh, M. C. Roggemann. Optical propagation in non-kolmogorov atmospheric turbulence[C]. SPIE, 1995, 2471: 181~196.

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部