期刊文献+

随机死亡率和利率下退休年金的长寿风险分析 被引量:13

An Analysis on Longevity Risk of Pension Annuities under Stochastic Mortality and Interest
原文传递
导出
摘要 鉴于我国人口日趋老龄化的现实并针对利率的波动特征,本文选用带跳的Feller过程模拟死亡强度,选用Cox-Ingersoll-Ross(CIR)模型刻画利率期限结构,进而建立了死亡率和利率均随机变化的退休年金定价模型。在此基础上,利用我国生命表数据并配合参数敏感度测试,估算模型参数及预测我国未来人口死亡率,进而着力分析了生存概率的改善对退休年金精算现值的影响。结果表明在其它金融风险均可实施有效对冲的情况下,长寿风险会使退休年金成本显著增加,严重威胁着寿险公司的偿付能力。这意味着寿险公司需要格外关注退休年金的设计和长寿风险的对冲策略。 Considering the aging trend of Chinese population and the characteristics of interest rates market, this paper models the death intensity by Feller process with jumps, describes the term structure of interest rate with Cox-Ingersoll- Ross (CIR) model. Based on these, the model of pension annuity is designed. Then, future mortality can be forecasted by sensitivity test and rationally setting of parameters in the death intensity model with the data of China's life tables. This paper further discusses how survival probabilities improve the influence on the present value of pension. The results show that longevity risk may increase the costs of products greatly under the condition that other financial risk hedged effectively. The longevity risk poses a threat to the solvency of life insurance. All of the above imply that life insurance should pay more attention to the design of pension annuities and the strategy to hedge the longevity risk.
作者 尚勤 秦学志
出处 《系统工程》 CSCD 北大核心 2009年第11期56-61,共6页 Systems Engineering
基金 教育部新世纪优秀人才支持计划项目(2005年) 国家自然科学基金资助项目(70771018) 教育部人文社会科学基金资助项目(05JA630005)
关键词 退休年金 长寿风险 带跳的Feller过程 CIR模型 Pension Annuities Longevity Risk Feller Process with Jumps CIR Model
  • 相关文献

参考文献15

  • 1Schepper A D, Goovaerts M. Some further results on annuities certain with random interest[J]. Insurance : Mathematics and Economics, 1992, 11 : 283-290.
  • 2Schepper A D, Goovaerts M, Kaas R. A recursive scheme for perpetuities with random positive interest rates[J]. Scandinavian Actuarial Journal, 1997, (1) : 1-10.
  • 3高建伟,邱菀华.随机利率下的生存年金模型[J].系统工程理论与实践,2002,22(6):97-100. 被引量:20
  • 4东明.随机利率下的联合寿险精算模型[J].系统工程,2006,24(4):68-72. 被引量:14
  • 5李长林,陈敏,周勇.随机利率下的生存年金组合精算现值模型[J].系统工程,2007,25(7):116-118. 被引量:7
  • 6Olivieri A. Uncertainty in mortality projections: an actuarial perspective[J]. Insurance :Mathematics and Economics, 2001,29(2):231-245.
  • 7Cairns A J G, Blake D, Dowd K. Pricing death: frameworks for the valuation and securitization of mortality risk [J]. ASTIN Bulletin, 2006,36 ( 1 ): 79-120.
  • 8Lee R D,Carter L R. Modeling and forecasting U. S. mortality[J]. Journal of the American Statistical Association, 1992,87 : 659- 671.
  • 9Renshaw A E, Haberman S. Lee-Carter mortality forecasting with age-specific enhancement[J]. Insurance: Mathematics and Economics, 2003, 33:255-272.
  • 10Brouhns N, Denuit M, Van Keilegom I. Bootstrapping the Poisson log-bilinear model for mortality forecasting [J]. Scandinavian Actuarial Journal, 2005:212-224.

二级参考文献22

  • 1王晓军.企业养老金计划精算模型[J].统计研究,1996,13(2):63-66. 被引量:12
  • 2朱晓平.联合寿险精算模型研究[J].同济大学学报(自然科学版),1997,25(1):56-60. 被引量:2
  • 3邹焱 许谨良 赵学林.夫妻联合两全养老金保险.经济数学,1992,:93-97.
  • 4吴亚森.概率论与数理统计[M].广州:华南理工大学出版社,1988..
  • 5Parker G.Stochastic analysis of the interaction between investment and insurance risks[J].Scandinavian Actuarial Journal,1997,1(2):55~84.
  • 6Marceau E,Gaillardetz P.On life insurance reserves in a stochastic mortality and interest rates environment[J].Insurance:Mathematics and Economics,1999,25:261~280.
  • 7Tsai C,Kuo W,Chen W K.Early surrender and the distribution of policy reserves[J].Insurance:Mathematics and Economics,2002,31:429~445.
  • 8Norberg R.Payment measures,interest,and discounting:an axiomatic approach with applications to insurance[J].Scandinavian Actuarial Journal,1990,52:14~33.
  • 9Bowers N L,Gerber H U.Actuarial mathematics[M].The Society of Actuaries,1997.
  • 10Kellison S G.The theory of interest[M].Homewood:Richard D.Irwin,Inc.,1991.

共引文献33

同被引文献90

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部