摘要
Data clustering is a significant information retrieval technique in today's data intensive society. Over the last few decades a vast variety of huge number of data clustering algorithms have been designed and implemented for all most all data types. The quality of results of cluster analysis mainly depends on the clustering algorithm used in the analysis. Architecture of a versatile, less user dependent, dynamic and scalable data clustering machine is presented. The machine selects for analysis, the best available data clustering algorithm on the basis of the credentials of the data and previously used domain knowledge. The domain knowledge is updated on completion of each session of data analysis.
Data clustering is a significant information retrieval technique in today's data intensive society. Over the last few decades a vast variety of huge number of data clustering algorithms have been designed and implemented for all most all data types. The quality of results of cluster analysis mainly depends on the clustering algorithm used in the analysis. Architecture of a versatile, less user dependent, dynamic and scalable data clustering machine is presented. The machine selects for analysis, the best available data clustering algorithm on the basis of the credentials of the data and previously used domain knowledge. The domain knowledge is updated on completion of each session of data analysis.