摘要
设p为素数,s,t∈N,a=sum form i=0 to ∞(aipi),r=sum form i=0 to ∞(ripi),这里ai,ri∈N,0≤ai≤p-1,0≤i≤t,0≤ri≤p-1,0≤i≤s,证明了Car≡Ca0r0…Casrs(mod p)和C(a+r)r≡C(a0+r0)r0C(a1+r1)r1…C(a1+r1)r1(mod p)两个同余式.据此导出了杨辉三角的第a行以及第0行至第a行的二项系数中,使Car■0(mod p)的个数和使Car≡0(mod p)的个数,推出了斜列{C(a+r)r:r=0,1,…}中使C(a+r)r■0(mod p)的个数和使C(a+r)r≡0(mod p)的个数.
p is a prime number, and s,t∈N,a=t∑i=0 aip^i,r=s∑i=0 rip^i where ai,ri∈N,0≤ai≤p-1,0≤i≤t,0≤ri≤p-1,0≤i≤s, two congruence expression,Ca^r=Ca0^r0…Cas^rs(mod p) and Ca+r^r≡Ca0+r0^r0 Ca1+r1^r1…Cat+rt^rt(mod p) are proved in the paper, Further more, we deduces the number of binomial coefficients from 0 to a rows of Yang Hui Triangle which can make Ca^r≡0(mod p) and make Ca^r≡0(mod p) and also get the numbers which make Ca+r^r≠0(mod p) and Ca+r^r≡0(mod p) in oblique column {Ca+r^r:r=0,1,…}
出处
《湖南理工学院学报(自然科学版)》
CAS
2009年第4期6-9,共4页
Journal of Hunan Institute of Science and Technology(Natural Sciences)
关键词
杨辉三角
二项式系数
素数
同余式
Yang Hui Triangle
binomial coefficient
prime number
congruence expression