摘要
H是有限群G的子群,若G中存在S-拟正元规子群T,使得G=HT且T∩H在G中S-拟正规,则称H在G中GS-拟正元规,设P是G的非循环Sylow子群,D满足1<|D|<|P|,若P中所有阶与|D|相等的子群H在G中没有超可解补,则H在G中CS-拟正规.
Consider H as a finite subgroup of G, some finite group. H is CS-quasinormal in G if G has an S-quasinormal subgroup T such that HT = G and T = ∩ H is S-quasinormal in G. Given P is a noncyclic Sylowsubgroup of G and one subgroup D meets 1 〈 | D | 〈 |P | , and if H has no supersolvable supplement in G under the assumption that all subgroups H of P has the same order as D, His CS-quasinormal in G.
出处
《重庆工学院学报(自然科学版)》
2009年第12期123-127,共5页
Journal of Chongqing Institute of Technology
基金
广西自治区自然科学基金资助项目(NO.0832054)
关键词
CS-拟正规
ρ-幂零群
ρ-可解群
CS-quasi- normal subgroup
p- nilpotent group
p-solvable group
CS-quasinormal