期刊文献+

电子温度对SiGe HBT基区渡越时间的影响

Effects of Electron Temperature Distribution on Base Transit Time of SiGe HBT
下载PDF
导出
摘要 讨论了采用能量传输模型时的SiGe HBT基区电子温度分布,以及电子温度对基区渡越时间的影响.计算结果表明:基区电子温度呈现明显的不均匀分布,从发射极侧到集电极侧逐渐增大;电子温度分布主要由基区Ge分布决定,而基区掺杂对电子温度的影响不大.考虑基区电子温度分布时基区渡越时间减小,在较大的Ge分布梯度下,电子温度对基区渡越时间的影响不可忽略. The electron temperature distribution in the base of SiGe HBT and its effects on the base transit time are studied. Results show that the electron temperature distribution in the base is uneven, increasing from emitter to collector. Ge profile has a great effect on the electron temperature, and the effect of the base doping profile is rather small. Moreover, the base transit time decreases if the electron temperature distribution is considered, and the effect of electron temperature distribution on base transit time cannot be neglected if Ge profile has a large slope.
出处 《重庆工学院学报(自然科学版)》 2009年第12期176-178,共3页 Journal of Chongqing Institute of Technology
基金 重庆理工大学科研启动基金资助项目(2005ZD01)
关键词 SIGE HBT 电子温度 基区渡越时间 SiGe HBT electron temperature distribution base transit time
  • 相关文献

参考文献5

  • 1Li Y,Kong D Y, Zhen J, et al. A base transport model for ultra - thin - base SiGe HBT [ J ]. Int J Electronics ,2000,87 ( 11 ) : 1281 - 1287.
  • 2Kuo J B, Huang H J, Lu T C. Closed - form physical model for VLSI bipolar devices considering energy transport [ J ]. IEE Elec Lett, 1994,30 ( 3 ) : 268 - 269.
  • 3蔡瑞仁,李垚,刘嵘侃.超薄基区SiGe HBT基区渡越时间能量传输模型[J].微电子学,2006,36(5):618-621. 被引量:2
  • 4Hong G B, Fossum J G. Implementation of nonlocal model for impact - ionization current in bipolar circuit simulation and application to SiGe HBT design optimization[J]. IEEE Trans Elec Dev, 1995,42 (6) : 1166 - 1173.
  • 5苏文勇,李蕊,邵彬.SiGe异质结双极晶体管基区渡越时间分析[J].北京理工大学学报,2005,25(6):522-525. 被引量:4

二级参考文献16

  • 1Patri V S,Kumar M J. Profile design considerations for minimizing base transit time in SiGe HBT's [J].IEEE Trans ED,1998,45(8):1725-1730.
  • 2Patri V S,Kumar M J.high-speed SiGe HBTs:Novel Ge-profile design forModelling and analysis [J].IEE Proc-Circuits Devices Syst, 1999, 146(5): 291-296.
  • 3Chang S T,Liu C W,Lu S C. Base transit time of graded-base Si/SiGe HBTs considering recombination lifetime and velocity saturation [J]. Solid StateElectronics ,2004 (48): 207-215.
  • 4Zareba A, Lukasiak L, Jakubowski A. Modeling of SiGe-base heterojunction bipolar transistor with gaussian doping distribution [J]. Solid-StateElectronics, 2001(45): 2029-2032.
  • 5Suzuki K. Optimum base doping profile for minimum base transit time [J]. IEEE Trans ED, 1991,38 (9):2128-2133.
  • 6Li Y, Kong D-Y, Zhen J, et al. A base transport model for ultra-thin-base SiGe HBT [J]. Int J Electronics. 2000, 87 (11): 1281-1287.
  • 7Kuo J B, Huang H J, Lu T C. Closed-form physical model for VLSI bipolar devices considering energy transport [J]. IEE Elec Lett, 1994, 30(3): 268-269.
  • 8Liu R, Qian W, Wei T. Analytical modeling of current gain and frequency characteristics under high injection levels in Si/SiGe heterojunction bipolar transistors at 77 K and 300 K [J]. Microelec J, 1999, 30(12):1195-1205.
  • 9Kwok K H. Analytical expression of base transit time for SiGe HBTs with retrograde base profiles [J]. Sol Sta Electro, 1999, 43(2): 275-283.
  • 10Chang S T, Liu C W, Lu S C. Base transit time of graded-base Si/SiGe HBTs considering recombination lifetime and velocity saturation [J]. Sol Sta Electro,2004, 48 (2): 207-215.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部