期刊文献+

不同尺寸锐钛矿结构TiO_2纳米晶的高压相变研究 被引量:1

High Pressure Phase Transformation Study of Different Sized Anatase TiO_2 Nanocrystals
下载PDF
导出
摘要 本文利用溶胶-凝胶法合成出5.6 nm、8.6 nm和19.4 nm三种尺寸的锐钛矿结构TiO2纳米晶,并利用金刚石对顶砧压机结合Raman光谱技术研究了尺寸效应对其在23 GPa高压下结构相变的影响。结果发现,对于5.6 nm和8.6 nm的样品,加压到23.2 GPa和22.5 GPa的压力时没有发生结构相变,而是转变为无定型结构,卸除压力后,依然保持为无定型;而19.4 nm的样品在约11.3 GPa时逐渐转变为单斜斜锆石结构,在卸压后转变为α-PbO2结构。相对于块材,尺寸越小,相变压力越大。基于吉布斯自由能理论,尺寸减小引起的表面能增大被认为是相变压力变大的主要原因。 In this paper, the anatase TiO2 nanocrystals with average diameters of 5.6 nm, 8.6 nm and 19.4 nm are synthesized by the sol--gel method. A Raman spectroscopic investigation was carried out to study the size effect on phase trans/ormation of anatase nanoerystals up to about 23 GPa using a diamond anvil cell. With the increase of pressure, the 5.6 nm and 8.6 nm nano--anatase phase remains stable to pressures as high as 23.2 GPa and 22.5 GPa, respectively, and then transformed to an amorphous structure. The new amorphous structure is unquenchable upon release of pressure to ambient pressure. On the other hand, the 19.4 nm nanocrystal undergoes a phase transformation from anatase phase to the monoclinic baddeleyite structure at an onset pressure of ~ 11.3 GPa. When decompressed to ambient pressure, this sample transforms to another phase--α-- PbO2 sructure. The metastability of anatase nanocrystals as a function of pressure is demonstrated to be size dependent, the smaller sample with the higher stability. The increased surface energy induced by decrease of size., is proposed as the main reason for the enhancement of phase transformation pressure based on the Gibbs free energy theory.
出处 《光散射学报》 北大核心 2009年第4期317-321,共5页 The Journal of Light Scattering
基金 中国科学技术大学青年基金(KA2340000007)
关键词 锐钛矿TiO2纳米晶 高压Raman 相变 表面能 anatase TiO2 nanocrystals high pressure Raman phase transformation surface energy
  • 相关文献

参考文献19

  • 1Ting C C, Chen S Y, Hsieh W F, etal. Effects of yttrium codoping on photoluminescenee of erbiumdoped TiO2 films [J]. J. Appl. Phys. , 1995, 90: 5564--5569.
  • 2Nicol M, Fong M Y. Raman spectrum and polymorphism of titanium dioxide at high pressures [J]. J. Chem. Phys., 1971, 54: 3167--3170.
  • 3Lagarec K, Desgreniers S. Raman study of single crystal anatase TiOz up to 70 GPa [J]. Solid State Commun. , 1995, 94(1): 519--524.
  • 4Dubrovinskaia N A, Dubrovinsky L S, Ahuja R, et al. Experimental and theoretical identification of a new high-pressure TiOa polymorph [J]. Phys. Rev. Lett., 2001, 87:275501(1--4).
  • 5Dubrovinsky L S, Dubrovinskaia N A, Swamy V, et al. the hardest known oxide [J]. Nature, 2001, 410: 653--654.
  • 6Jiang J Z, Gerward L, Frost D, etal. Grain--size effect on pressure-induced semiconductor-to-metal transition in ZnS [J]. J. Appl. Phys.. 1999, 86: 6608--6610.
  • 7Jiang J Z, Gerward L, Seeeo R, et al. Phase transformation and conductivity in nanocrystal PbS under pressure [J]. J. Appl. Phys., 2000, 87: 2658--2660.
  • 8Wang H, LiuJ F, He Y, et al. High--pressure structural behaviour of nanocrystalline Ge [J]. J. Phys.: Condens. Matter, 2007, 19: 156217-- 156226.
  • 9Wang Z W, Saxena S K, Pischedda V, et al in situ x-- ray diffraction study of the pressure-induced phase transformation in nanocrystalline CeO2[J]. Phys. Rev. B, 2001, 64: 012102(1--4).
  • 10Wang Z W, Saxena S K, Pischedda V, et al. X- ray diffraction study on pressure-induced phase transformations in nanocrystalline anatase/rutile (TiO2) [J]. J. Phys. : Condens. Matter, 13: 8317--8323.

二级参考文献9

  • 1J Haines, J M Leger. X-ray diffraction study of TiO2 up to 49 GPa[J]. Physiea B,1993,192(33) :233 - 237.
  • 2L Gerward, J S Olsen. Post-Rutile High-Pressure Phases in TiO2[J]. J. Appl. Cryst., 1997, 30(3): 259 - 264.
  • 3J S Olsen, L Gerward, J Z Jiang. On the rutile/a-PbO2-type phase boundary of TiO2[J]. Journal of Physics and Chemistry of Solids, 1999,60(2) : 229 - 233.
  • 4T Arlt, M Bermeo, M A Blanco, et al. High-pressure polymorphs of anatase TiO2[J]. Phys. Rev. B, 2000,61(21) : 14414 - 14419.
  • 5H Arashi. Raman Spectroscopic study of the pressureinduced phase transition in TiO2[ J ]. Journal of Physics and Chemistry of Solids, 1992,53 (33) : 355 - 359.
  • 6K Lagarec, S Desgreniers. Raman study of single crystal anatase TiO2 up to 70 GPa [ J ]. Solid State Communications, 1995,94(1) :519 - 524.
  • 7H Sato, S Endo, M Sugiyama, et al. Baddeleyite- type high-pressure phase of TiO2[J]. Science, 1991, 251(4995) :786 - 788.
  • 8Natalia A. Dubrovinskaia, Leonid S. Dubrovinsky, Rajeev Ahuja, Vitaly B. Prokopenko, V. Dmitriev, H.- P. Weber, J. M. Osorio-Guillen, and B? rje Johansson, Experimental and Theoretical identification of a new high-pressure TiO2 polymorph [J ]. Phys. Rev. Lett,, 2001, 87 (27):275501 - 275504.
  • 9M Mattesini, J S de Almeida, L Dubrovinsky, et al. high-pressure and high-temperature synthesis of the cubic TiO2 polymorph[J]. Phys. Rev. B, 2004, 70 (21):212101 - 212104.

共引文献2

同被引文献14

  • 1肖萍,郑少波,尤静林,蒋国昌,陈辉,曾昊.钛氧化物结构及其拉曼光谱表征[J].光谱学与光谱分析,2007,27(5):936-939. 被引量:18
  • 2Cao Y C,Zhao Z Y,Yi J,et al.Luminescence Properties of Sm3 +-doped TiO2 Nanoparticles:Synthesis,Characterization,and Mechanism [J].Journal of Alloys and Compounds,2013.554:12-20.
  • 3Khatim 0,Amamra M,Chhor K,et al.Amorphous-anatase Phase Transition in Single Immobilized TiO2 Nanoparticles[J].Chemical Physics Letters,2013,558:53-56.
  • 4Chan C C,Chang C C,Hsu W C,et al.Photocatalytic Activities of Pd-Loaded Mesoporous TiO2 Thin Films[J].Chemical Engineering Journal,2009,152(2):492-497.
  • 5Mattesini M,De Almeida J S,Dubrovinsky L,et al.High-Pressure and High-Temperature Synthesis of the Cubic TiO2 Polymorph[J].Physical Review B,2004,70(21):212101.
  • 6Dubrovinsky L S,DubrovinskaiaN A,Swamy V,et al.The Hardest Known Oxide[J].Nature,2001,410(6829):653-654.
  • 7Kim Y,Miteugi F,Tomoaki I,et al.Shock-Consolidated IiO2 Bulk with Pure Anatase Phases Fabricated by Explosive Compaction using Underwater Shockwave [J].Journal of the European Ceramic Society,2011,31(6):1033-1039.
  • 8Gao X,Chen P W,and Liu J J.Enhanced Visible-light Absorption of Nitrogen-Doped Titania Induced by Shock Wave[J].Materials Letters,2011,65(4):685-68.
  • 9Wang J X,Yang S Y,Wang J,et al.Phase,Crystal Structure and Sintering Behavior of Shock-Synthesized Pb(Zr0.95Ti0.05)O3 Powders[J].Solid State Sciences,2010,12(12):2054-2058.
  • 10ChenPW,Cao Xy LiuJJ,et al.Shock Synthesis and Characterization of a High-Pressure Phase of TiO2 [J].Materials Science Forum,201,673:155-160.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部