期刊文献+

快速查找初始聚类中心的K_means算法 被引量:19

K_means Clustering Algorithm with Fast Lookup Initial Start Center
下载PDF
导出
摘要 传统的k_means算法对初始聚类中心十分敏感,聚类结果随不同的初始输入而波动,容易陷入局部最优.为消除这种敏感性,针对k_means算法,提出了一种新的基于数据样本分布选取初始聚类中心的方法,对公共数据库UCI里面的数据实验表明改进后的k_means算法能产生质量较高的聚类结果,并且消除了对初始输入的敏感性. The traditional k_means algorithm has sensitivity to the initial start center.The clustering accuracy of k_means is affected by the initial start center,and it is very easy to sink into the part best.To solve this problem,for k_means method,we give a new method for selecting initial start center based on sample data distribution to improve the clustering accuracy of k_means.Experiments on the standard database UCI show that the proposed method can produce a high accuracy clustering result and eliminate the sensitivity to the initial start centers.
出处 《兰州交通大学学报》 CAS 2009年第6期15-18,共4页 Journal of Lanzhou Jiaotong University
关键词 聚类 数据样本 欧式距离 k_means算法 聚类中心 clustering sample data euclid distance k_means algorithm clustering center
  • 相关文献

参考文献8

  • 1MacQueen J. Some methods for classification and analysis of multi-variate observations[C]//Proceedings of the 5th Berkeley Symposiumon Mathematical Statistics and Probability, 1967.
  • 2Dhillon I, Guan Y, Kogan J. Refining clusters in high dimensional data[C] // Arlington: The 2nd SIAM ICDM, Workshop on Clustering High Dimensional Data, 2002.
  • 3Zhang B. Generalized K- harmonic means: dynamic weighting of data in unsupervised learning[C]//Chicago:Proceedings of the 1st SIAM ICDM,2001.
  • 4Pelleg D,Moore A. X-means: extending K-means with efficient estimation of the number of the clusters[C]// Proceedings of the 17th ICML, 2000.
  • 5Sarafis I,Zalzala A M S, Trinder PW. A genetic rule- based data clustering toolkit[C]//Honolulu: Congress on Evolutionary Computation(CEC), 2002.
  • 6Strehl A, Ghosh J. A scalable approach to balanced, high-dimensional clustering of market baskets[C]..Proceedings of the 17th International Conference on High Performance Computing, Bangalore; Springer LNCS, 2000:525-536.
  • 7Banerjee A,Ghosh j. On scaling up balanced clustering algorithrns[CJ//Arlington: Proceedings of the 2nd SIAM ICDM,2002.
  • 8Berkhin P, Becher J. Learning simple relations: theory and applications[C]//Arlington: Proceedings of the 2nd SIAM ICDM, 2002 : 333-349.

同被引文献157

引证文献19

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部