期刊文献+

动态贝叶斯网络在战场态势估计中的应用 被引量:13

Application of Dynamic Bayesian Network in Battlefield Situation Assessment
下载PDF
导出
摘要 贝叶斯网络用于态势估计时,系统参数不能及时调整,无法对未来时刻进行预测。为解决这一问题,对动态贝叶斯网络在战场态势评估中的应用进行了研究,引入时间因素,建立了网络模型,分析了概率参数与推理的过程,并利用卡尔曼滤波模型法对推理进行仿真实验。实验结果表明了动态模型推理的有效性。动态贝叶斯网络可以有效利用侦察数据中的时间信息,实时动态地处理影响分析和决策的种种因素,对指挥员的作战决策具有极大的参考价值。 The Bayesian Network (BN) is not able to predict the future when it is used for situation assessment since the system parameters can not be updated in real-time. To solve this problem, we studied the application of Dynamic Bayesian Network (DBN) in battlefield situation assessment. The factor of time was introduced to construct the network model. The probability parameters and inference procedure were analyzed, and Kalman filter algorithm was used in simulation of the inference. The simulation result proved the feasibility of the dynamic inference model. Since information of time from reconnaissance data can be used effectively in DBN for dynamically processing the factors that have effect on analysis and decisionmaking, thus it is of great significance for decision-making of commanders.
出处 《电光与控制》 北大核心 2010年第1期44-47,共4页 Electronics Optics & Control
基金 军队装备基金项目资助(KGDDY05401)
关键词 态势评估 动态贝叶斯网络 卡尔曼滤波算法 战场 situation assessment dynamic Bayesian network Kalman filter algorithm battlefield
  • 相关文献

参考文献9

二级参考文献32

  • 1刘英利,朱庆杰,岳文珍,谷延斌,卢时林.贝叶斯预测模型在矿物含量预测中的应用[J].河北理工学院学报,2004,26(1):116-121. 被引量:6
  • 2陈益伦.降水强度影响713雷达探测距离的理论估计[J].广西气象,1993,14(2):57-58. 被引量:1
  • 3吴宏宇.气象和环境对装备的影响及适应性对策[J].装备环境工程,2005,2(2):86-89. 被引量:7
  • 4敬喜.卡尔曼滤波器及其应用基础[M].北京:国防工业出版社,1990..
  • 5浦发.外弹道学[M].北京:国防工业出版社,1982..
  • 6颜庆津.数值分析[M].北京:北京航空航天大学出版社,1989..
  • 7WEST M,HARRISON P J.Bayesian Forecasting and Dynamic Models[M].New York:Springer-Verlag,1990.
  • 8Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo,CA,Morgan Kaufmann, 1988
  • 9Pearl J. On Evidence Reasoning in a Hierarchy of Hypotheses. Artificial Intelligence, 1986,28: 9~ 15
  • 10Heckerman D. A Bayesian Approach for Learning Causal Networks. In: Proc. of the 11th Conf. of Uncertainty in Artificial Intelligence,San Francisco,1995. 285~295

共引文献77

同被引文献85

引证文献13

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部