期刊文献+

具有连续预防接种和垂直传染的SIR流行病模型的稳定性分析 被引量:3

The stability analysis of the SIR epidemic models with vertical infection and continuous vaccination
下载PDF
导出
摘要 研究一类具有垂直传染和双线性发生率的连续预防接种的SIR模型,得到决定疾病持续生存的阈值。当阈值小于1时,仅存在无病平衡点;当阈值大于1时,除存在无病平衡点外,还存在唯一的地方病平衡点。利用Hurwitz判据得到了地方病平衡点的局部渐近稳定性。利用La-salle不变原理和Liapunov函数得到了无病平衡点和地方病平衡点全局渐近稳定。 An SIR epidemic model with vertical infection, continuous vertical and bilinear incidence rates, is considered. The threshold which determines the existence of the infective disease is found. When it is smaller than 1, there only exists disease free equilibrium;when it is bigger than 1, the endemic equilibrium and the disease free e- quilibrium exist. By Hurwitz criterion, the locally asymptotieal stability of the disease free equilibrium is proved. By Lasalle invariant theorem and Liapunov function, the global asymptotical stability of disease free equilibrium and the endemic equilibrium is proved.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2009年第6期738-741,共4页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省自然科学基金资助项目(A200502) 黑龙江省教育厅资助项目(10051061)
关键词 流行病 地方病平衡点 阈值 全局稳定性 epidemic endemic equilibrium threshold global stability
  • 相关文献

参考文献6

二级参考文献19

  • 1陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 2杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:23
  • 3[1]Kermark M D, Mckendrick A G. Contributions to the mathematical theory of epidemics[J]. Part Ⅰ Proc Roy Soc A, 1927; 115(5): 700-721.
  • 4[2]Horst R, Thieme, Carlos Castillo-Chavez. How may infection age-dependent infectivity affect the dynamics of HIV/AIDS?[J]. Siam J Appl Math, 1993;53(5): 1447-1449
  • 5[3]Carlos Castillo-Chavez, Zhilan Feng. Global stability of an age-structure model for TB and its application to optimal vaccination strategies[J]. Mathematical Biosciences, 1998;151(2): 135-154
  • 6[6]寥晓昕.稳定性的理论、方法和应用[M].武汉:华中理工大学出版社,1999
  • 7[1]Wang W,Ruan S.Bifurcations in an epidemic model with constant removal rate of the infectives[J].Journal of Mathematical Analysis and Applications,2004,291(2):775-793.
  • 8[2]Alexander M E,Moghadas S M.Periodicity in an epidemic model with a generalized non-linear incidence[J].Mathematical Biosciences,2004,189(1):75-96.
  • 9[3]Alberto d'Onofrio.On pulse vaccination strategy in the SIR epidemic model with vertical transmission[J].Applied Mathematics Letters,2005,18(7):729-732.
  • 10[9]李健全.具有预防接种流行病的模型[D].(西安交通大学博士论文),2003.

共引文献54

同被引文献22

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部