期刊文献+

赋Γ收敛结构的模糊数空间上的两个基本定理

Two basic theorem on fuzzy number space equipped with Γ-convergence
下载PDF
导出
摘要 首先介绍关于模糊数和Γ收敛的相关概念和结论,然后给出具有小于等于关系的模糊数之间的Hausdorff距离的一个不等式。设u,v,w∈E,若uvw,则dH(endu,endv)≤dH(endu,endw)。在此基础上证明了在赋Γ收敛结构的模糊数空间上成立单调收敛定理和闭区间套定理。这一结论推广了实数理论的相关结果。 Some notions and results related to fuzzy numbers and Г convergence are firstly introduce. Then, it give an inequality on the Hausdorff distances between the fuzzy numbers which have the equal or lesser than relation: Suppose that u,v,w∈E. If u≤v≤w, then dH(end u,end v) ≤dH(end u,end w). From which, it is shown that the monotone convergence theorem and the nested intervals theorem both hold on fuzzy number space equipped with the Г-convergence. These conclusions generalize the corresponding results for real number space.
作者 毛青松
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2009年第6期746-748,共3页 Journal of Natural Science of Heilongjiang University
关键词 模糊数 Г收敛 单调收敛定理 闭区间套定理 fuzzy number Г-convergence monotone convergence theorem nested intervals theorem
  • 相关文献

参考文献9

  • 1WU Cong - xin, WU Cong. The supremum and infimum of the set of fuzzy numbers and its Application [ J ]. Journal of Mathematical Analysis and Applicalion, 1997,210 : 499 - 511.
  • 2WU Coug - xin, WU Cong. Some note on the supremum and infimum of the set of fuzzy numbers[ J ]. Fuzzy Sets and Systems, 1999, 103 : 183 - 187.
  • 3FANC Jin - xuan, HUANG Huan. On the level convergence of sequence of tuzzy numbers[ J]. Fuzzy Sets and Systems, 2004,147:417 -435.
  • 4吴从炘,李洪亮.两个基本定理在模糊数度量空间的推广[J].黑龙江大学自然科学学报,2008,25(2):141-143. 被引量:4
  • 5HUANG Huan, WU Cong - xin. Characterizations of Г -convergence on fuzzy number space[ C]. Fuzzylogic, Soft Computing and Computational Intelligence, Beijing:Springer,2005:66 -70.
  • 6吴从炘 马明.模糊分析学基础[M].北京:国防工业出版社,1991.84-96.
  • 7DIAMOND P, KLOEDEN P.Metric space of fuzzy sets - theory and application[M]. Singapore: World Scientific, 1994.
  • 8GOETSCHEL R,VOXMAN W. Elementary fuzzy calculus[J].Fuzzy Sets and Systems 1986,18:31 -43.
  • 9毛青松.模糊数空间上Γ-收敛的保序性[J].模糊系统与数学,2009,23(5):144-148. 被引量:2

二级参考文献7

  • 1Diamond P, Kloeden P E. Metric space of fuzzy sets - theory and applications[ M]. Singapore:World Scientific, 1994.
  • 2Wu Congxin, Wu Cong. The supremum and infimum of the set of fuzzy numbers and its application[ J]. Journal of Mathematical Analysis and Application, 1997, 210:499 -511.
  • 3Wu Congxin, Wu Cong. Some note on the supremum and infimum of the set of fuzzy numbers[ J]. Fuzzy Sets and Systems, 1999,103Z:183 -187.
  • 4Fang Jinxuan, Huang Huan. Some properties of the level convergence topology of fuzzy number space En [ J]. Fuzzy Sets and Systems, 2003,140 : 509 -517.
  • 5Fang Jinxuan, Huang Huan. On the level convergence of a sequence of fuzzy numbers[ J]. Fuzzy Sets and Systems, 2004,147:417 -435.
  • 6Li Hongliang, Wu Congxin. The integral of a fuzzy mapping over a directed line[ J ]. Fuzzy Sets and Systems,2007,158:2317 -2338.
  • 7王绪柱.关于模糊数近似相等[J].工程数学学报,2003,20(1):55-59. 被引量:3

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部