期刊文献+

马尔科夫链中群逆稳定性分析

Sensitivity Analysis of Group Inverse in Markov Chains
原文传递
导出
摘要 令P是有限状态离散马尔科夫链的转移矩阵,群逆(I-P)#在马尔科夫链分析中有着重要应用.给出了当P的每一个元素有小的相对扰动时,(I-P)#在范数意义下的相对扰动误差界.所得的界只依赖于矩阵的阶数,而与马尔科夫链本身的性质无关. Let P be the transition matrix of a discrete-time Markov chain. The group inverse (I-P)# plays an important role in the analysis of the Markov chain. It's analyzed that the sensitivity of group inverse under the entrywise perturbation in P. The error bound shows that the sensitivity is independent of the condition of the Markov chain.
作者 江潇
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期754-758,共5页 Journal of Fudan University:Natural Science
关键词 马尔科夫链 转移矩阵 群逆 相对误差界 平均首达时间 Markov chain stochastic matrix group inverse relative-error hound mean first passage time
  • 相关文献

参考文献9

  • 1Decell Jr D P, Odell P L. On the fixed point probability vector of regular or ergodic transition matrices [J]. J Arner Statist Assoc, 1967,62: 600-602.
  • 2Englefield M J. The commuting inverses of a square matrix[J]. Proc Cambridge Philos Soc, 1966,62: 667-671.
  • 3Odell P L, Decell H P. On computing the fixed point probability vector of ergodic transition matrices[J]. J Assoc Comput Mach, 1967,14: 765-768.
  • 4Meyer C D. The role of the group generalized inverse in the theory of finite Markov chains [J]. SIAM Review, 1975,17: 443-464.
  • 5Langville A N, Meyer C D. Google's page rank and beyond: the science of search engine rankings [M]. Princeton and Oxford: Princeton University Press, 2006.. 31-75.
  • 6Hunter J J. Stationary distribution and mean first passage times of perturbed Markov chains[J]. Res Lett Inf Math Sci, 2002,3: 85-98.
  • 7Stewart W J. Introduction to the numerical solution of markov chains [M]. Princeton: Princeton University Press, 1994.
  • 8Dietzenbacher E. Perturbations and eigenvectors: essays[D]. The Netherlands: University of Groningen, 1990.
  • 9Alfa A S, Xue Jungong, Ye Qiang. Entrywise perturbation theory for diagonally dominant M-matrices with applications[J]. Numer Math, 2002,90: 401-414.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部