期刊文献+

线性随机系统的最优反馈控制及拟Riccati方程的解

The Optimal Feedback Control of Linear Stochastic Systems and the Solutions of Quasi-Riccati Equations
原文传递
导出
摘要 主要研究了多维线性随机系统在非二次的目标泛函下的最优控制问题,给出了最优闭环控制以及系统对应的拟Riccati方程的表达式,讨论了特殊情况下的拟Riccati方程的经典解的存在惟一性,最后还求出了一类拟Riccati方程的经典解并通过求解拟Riccati方程得到了最优投资组合的解. The optimal control problem for multidimensional linear stochastic systems with non-quadratic cost function is studied. Optimal feed-back controls are formulated via the related quasi-Riccati equation. Sufficient conditions for the existence of the quasi-Riccati equation are proved with the help of forward-backward stochastic differential equation. The explicit solution for a class of quasi-Riccati equations are given to solve a kind of optimal portfolio problem.
作者 朱岚 周渊
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2009年第6期759-768,共10页 Journal of Fudan University:Natural Science
基金 国家自然科学基金资助项目(10571030 10971127) 国家重点基础研究发展规划(973计划)资助项目(2007CB814904)
关键词 随机最优控制 非二次指标 拟Riccati方程 正倒向随机微分方程组 stochastic optimal control non-quadratic performance quasi-Riccati equation forward-backward stochastic equation
  • 相关文献

参考文献17

  • 1Bensoussan A. Nonlinear filtering and stochastic control[M]//Mitter S K, Moro A. Lecture Notes in Mathematics. New York: Springer Verlag, 1982: 1-62.
  • 2Bismut J M. An introductory approach to duality in optimal stochastic control[J]. SIAM Rev, 1978,20: 62-78.
  • 3Kushner H J. On the existence of optimal stochastic controls[J]. SIAMJ Control, 1965,3: 463-474.
  • 4Yong J, Zhou X Y. Stochastic controls: Hamlitonian systems and HJB equations [M]. New York: Springer-Verlag, 1999.
  • 5Kohlmann M, Tang S. Minimization of risk and linear quadratic optimal control theory[J]. SIAM J Control, 2003,142(3) : 1118-1442.
  • 6You Y. Synthesis of time-variant optimal control with nonquadratic criteria[J]. Journal of Mathematical Analysis and Applications, 1997,209: 662-682.
  • 7潘立平.无限维线性-非二次最优控制问题[J].数学年刊(A辑),1997,1(1):93-108. 被引量:6
  • 8Karatzas I, Shreve S E. Methods of mathematical finance [M]. New York: Springer, 1998.
  • 9周渊.线性随机系统的非二次最优控制[C]//程代展.第二十五届中国控制会议论文集.北京:北京航空航天大学出版社,2006:655-658.
  • 10Ma J, Protter P, Yong J. Solving forward-backward stochastic differential equations explicitly - a four step scheme [J]. Prob and Related Fields, 1994,98: 339-359.

二级参考文献28

  • 1[3]Ma, J., Protter, P. & Yong, J., Solving forward-backward stochastic differential equations explicitly - a four step scheme [J], Prob. & Related Fields, 98:2(1994), 339-359.
  • 2[4]Hu., Y. & Peng, S., Solution of forward-backward stochastic differential equations [J],Proba Theory and Related Fields, 103:2(1995), 273-283.
  • 3[5]Peng, S. & Wu, Z., Fully coupled forward-backward stochastic differential equations and applications to optimal control [J], SIAM J. Control Optim., 37:3(1999), 825-843.
  • 4[6]Yong, J., Finding adapted solution of forward-backward stochastic differential equations-method of continuation [J], Proba. Theory and Related Fields, 107:4(1997),537-572.
  • 5[7]Crandall, M., Ishii, Ⅱ. & Lions, P. L., User's guide to viscosity solution of Second order partial differential equations [J], Bull. Amer. Soc., 27:1(1992), 1-67.
  • 6[8]Peng, S, Open Problems on Backward Stochastic Differential Equations [A], Control of Distributed Parameter and Stochastic Systems [M], Chen, S., Li, X., Yong, J., Zhou,X. Y. eds. Boston, Kluwer Acad. Pub., 1999, 265-273.
  • 7[9]Pardoux, E. & Tang, S., Forward-backward stochastic differential equations and quasilinear parabolic PDEs [J], Prob. & Related Fields, 114:2(1999), 123-150.
  • 8[10]Wu, Z., The comparison theorem of FBSDE [J], Statistics and Probability Letters,44:1(1999), 1-6.
  • 9[11]Karoui, El., Kapoudjian, C., Pardoux, E., Peng, S. & Quenez, M. C., Reflected solutions of backward SDE's, and related obstacle problems for PDE's [J], The Annals of Probability, 25:2(1997), 702-737.
  • 10[12]Wu, Z., Adapted solution of generalized forward-backward stochastic differential equations and its dependence on parameters [J], Chinese Journal of Contemporary Mathematics, 19:1(1998), 9-18.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部