期刊文献+

应用平衡截断的模型降阶 被引量:4

Model reduction using balanced truncation
下载PDF
导出
摘要 将高阶系统降为低阶系统研究是控制理论的一个基本方法,平衡截断方法是一维系统降阶的有效方法.受一维降阶方法的启发,研究了二阶线性时不变系统的降阶方法.简单的介绍了一维能控性、能观性、Gramian矩阵和一阶系统的平衡截断方法和基本思想.通过分析二阶系统和一阶系统之间的关系,定义了二阶能控性和能观性Gramian矩阵,将一阶平衡截断的方法应用到了二阶系统.在保持二阶系统结构的前提下构造一个维系统,将著名的平衡截断技巧应用于本文定义的二阶Gramians矩阵,对二阶模型进行降解.同时给出了两种降阶算法并证明这种算法是保持二阶结构的. To study higher order systems in control theory,it is a usual method that higher order systems are reduced to lower order systems.The balanced truncation technique have well applied to one-order systems.Motivated by the method of one-order system reductions,in this paper we study the reduction method for two-order LMI systems.We briefly introduce the controllability、observability、gramian matrix and the method and idea of the balanced truncation techniques for one-order systems.By analyzing the relationship between the one-order system and two-order system,the objective of this paper is to constructing a reduced system by preserving the second-order structure of the original system.This model reduction method uses a variant of the well-known balanced truncation technique applied to second-order gramians.We also give two reduction computing methods and a proof that the method do preserving the second-order structure.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2009年第4期422-425,共4页 Journal of Liaoning Normal University:Natural Science Edition
关键词 模型降阶 平衡截断 二阶gramian LYAPUNOV方程 model reduction balanced truncation second-order gramian Lyapunov equation
  • 相关文献

参考文献5

  • 1BENNER P,MEHRMANN V,SORENSEN D. Dimension Reduction of Large-Scale Systems, volume 45 of Lecture Notes in Computational Science and Engineering[M]. Berlin:Springer-Verlag, Heidelberg,2005.
  • 2MOORE B C. Principal component analysis in linear systems: controllability, obserbability, and model reduction[J]. IEEE Trans Automat Control, 1981, AC-26 (1) : 17-32.
  • 3LAUB A J,ARNOLD W F. Controllability and obscrvability criteria for multivariable linear second-order models[J]. IEEE Trans Automat Control, 1984,29(2) : 163-165.
  • 4CHAHLAOUI Y, GALLIVAN K,VANDENDORPE A, et al. Model reduction of second order systems[J]. Model Reduction of Dynamical Systems, 2005,45 : 149-172.
  • 5MEYER D G,SRINIVASAN S. Balancing and model reduction for second-order form linear systems[J]. IEEE Trans Automat Control,1996, 41(11) :1632-1644.

同被引文献21

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部